• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Complexos

Complexos

Mensagempor karen » Ter Nov 27, 2012 13:13

Sendo x um número real e i a unidade imaginária, então para que a parte real do número z = \frac{1 + i}{x + i} seja 1, devemos ter:

Eu assinalei a alternativa x = 1, mas a correta é a que tinha x = 1 ou x = 0, não entendi porque entra o x = 0 se o x tem que ser igual a 1!
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Complexos

Mensagempor young_jedi » Ter Nov 27, 2012 14:44

voce pode multiplicar pelo conjugado do denominador

\frac{1+i}{x+i}=\frac{1+i}{x+i}.\frac{x-i}{x-i}

\frac{1+i}{x+i}=\frac{(1+i)(x-i)}{x^2-i^2}

\frac{1+i}{x+i}=\frac{x-i+i.x-i^2}{x^2-(-1)}

\frac{1+i}{x+i}=\frac{x-i+i.x+1}{x^2+1}

\frac{1+i}{x+i}=\frac{1+x+i.(x-1)}{x^2+1}

\frac{1+i}{x+i}=\frac{1+x}{x^2+1}+i\frac{x-1}{x^2+1}

tomando a parte real

\frac{1+x}{x^2+1}=1

x^2+1=1+x

x^2-x=0

x(x-1)=0

portanto x=0 e x=1 satisfazem a equação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Complexos

Mensagempor karen » Ter Nov 27, 2012 14:52

Humm, agora entendi!
Muito obrigada!
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.