• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral com fracões parciais

Integral com fracões parciais

Mensagempor menino de ouro » Dom Nov 25, 2012 17:29

eu nao estou conseguindo resolver esta integral!



\int_{2}^{4}\frac{2x^2-x+4}{x(x^2+4)}dx= \frac{A}{x}+\frac{B}{x^2+4}
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral com fracões parciais

Mensagempor MarceloFantini » Dom Nov 25, 2012 19:14

A quebra em frações parciais está incorreta. Quando temos um polinômio sem raízes reais, como neste caso, fica

\frac{2x^2 -x +4}{x (x^2 +4)} = \frac{A}{x} + \frac{Bx + C}{x^2 +4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral com fracões parciais

Mensagempor menino de ouro » Dom Nov 25, 2012 20:19

resolvendo então eu vou cair em um sistema linear?


\frac{A}{x}+ \frac{Bx+C}{x^2+4} =\frac{A(x^2+4)+(Bx+C)x}{x(x^2+4)}



2x^2-x+4=A(x^2+4)+(Bx+C)x



A.x^2 +A.4+B.x^2+C.x=x^2(A+B)+4.A+C.x


como resolvo esse sistema?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral com fracões parciais

Mensagempor e8group » Dom Nov 25, 2012 20:50

Uma outra forma mais simples é ver que ,


\frac{2x^2 -x + 4}{x(x^2+4)} = \frac{(x^2 + 4) + x^2 -x}{x(x^2+4)} = \frac{(x^2+4)+ x(x -1)}{x(x^2+4)} = \frac{x^2 +4}{x(x^2+4)} +   \frac{x(x-1)}{x(x^2+4)} =   \frac{1}{x} + \frac{x-1}{x^2 +4}  = \frac{1}{x} + \frac{x}{x^2 +4} - \frac{1}{x^2 +4} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral com fracões parciais

Mensagempor menino de ouro » Dom Nov 25, 2012 21:59

como faz para chegar nessa primeira operação? ( \frac{(x^2+4)+x^2-x}{x(x^2+4)} ) não entendi ! os outros passos entendi.


você acha mais difícil pelo sistema anterior?




tem alguma forma mais simples?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.