• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Máximo e mínimo com duas Variáveis

Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Sáb Nov 24, 2012 08:19

z=x^4+y^4-2x^2 - 4xy-2y^2

o prof deu esse e alguns outro exercícios para estudar em casa, esse eu estou com dificuldade para fazer porque depois que eu derivo em relação a x e a y faço o sistema e somo as duas equações está dando x = y e ai eu não consigo descobrir a discriminante será que alguém consegue me ajudar?
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Sáb Nov 24, 2012 15:55

Você poderia mostrar suas contas? Não necessariamente está errado, pela sua descrição parece que faltam algumas contas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Sáb Nov 24, 2012 23:25

posso sim, vamos lá

dz/dx = 4x^3 - 4x - 4y
dz/dy = 4y^3 - 4x - 4y

somei as 2, deu:

4x^3 - 4y^3 = 0
4x^3 = 4y^3
x^3 = 4y^3/4
x = \sqrt{y^3} (aqui é raiz cubica ta, eu não consegui fazer o simbolo)

e ai vai ficar:

x = y

fazendo as derivadas de segunda ordem:

dz^2/dx^2 = 12x^2 - 4 = A
dz^2/dy^2 = 12y^2 - 4 = C
dz^2/dxdy = -4 =B

Delta = A*C - B^2

(12x^2 -4) * (12y^2 -4) -(-4)^2

eu travei aqui, não sei como continuar
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Dom Nov 25, 2012 19:30

Vamos lá. Primeiro, vamos corrigir sua notação: a que usou significa derivada total, enquanto a correta para derivadas parciais é \frac{\partial f}{\partial x}. Então

\begin{cases}
\frac{\partial z}{\partial x} = 4x^3 -4x -4y = 0, \\
\frac{\partial z}{\partial y} = 4y^3 -4x -4y =0.
\end{cases}

Subtraindo você encontrou que x=y. Substituindo na primeira equação vem 4x^3 -4x -4x = 4(x^3 -2)=0, logo x = y = \sqrt[3]{2} e o par (\sqrt[3]{2}, \sqrt[3]{2}) talvez seja máximo ou mínimo.

Calculando as derivadas de segunda ordem temos

\begin{cases}
\frac{\partial^2 z}{\partial x^2} = 12x^2 -4, \\
\frac{\partial^2 z}{\partial y^2} = 12y^2 -4, \\
\frac{\partial^2 z}{\partial x \partial y} = -4.
\end{cases}

Logo o Hessiano será H(x,y) = (12x^2 -4) \cdot (12y^2 -4) - (-4)^2. Substituindo o ponto (\sqrt[3]{2}, \sqrt[3]{2}) temos que H(\sqrt[3]{2}, \sqrt[3]{2}) > 0, portanto um ponto de mínimo local.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Ter Nov 27, 2012 08:52

MarceloFantini escreveu: 4x^3 -4x -4x = 4(x^3 -2)=0

não entendi aqui! :S
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Ter Nov 27, 2012 19:09

Note que 4x^3 -4x -4x = 4x^3 - 8x = 4(x^3 -2) = 0. Eu apenas pulei uma passagem.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Ter Nov 27, 2012 23:00

MarceloFantini escreveu:Note que 4x^3 -4x -4x = 4x^3 - 8x = 4(x^3 -2) = 0. Eu apenas pulei uma passagem.


ahhhhhh tahh, e também agora que eu percebi que como o x = y você subsituiu ali, não tinha pensado assim ... dããã ... kkk

valeu cara, muito obrigado! :D
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.