• Anúncio Global
    Respostas
    Exibições
    Última mensagem

radiciação na função

radiciação na função

Mensagempor malbec » Qui Nov 22, 2012 10:12

Bom dia a todos os colegas desta página. Tenho uma dúvida para ser compartilhada aqui. Não consegui entender essa questão que me parece misturar função do 1º grau com radiciação. A questão é a seguinte: Dada a função f: C --> C onde f(x) = 3x + 7. Calcule

f(raiz de 7) - f(raiz de Pi)
raiz de 7 - raiz de Pi

as respostas foram as mais variadas, porém, a resposta certa foi a letra (A) 3.

Não consegui entender o sentido da questão e nem tampouco seus cálculos. Gostaria de ajuda se possível e agradeço desde já.
malbec
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 31, 2012 10:41
Formação Escolar: ENSINO MÉDIO
Área/Curso: formação geral
Andamento: cursando

Re: radiciação na função

Mensagempor e8group » Qui Nov 22, 2012 11:09

Dada a função f : \mathbb{R} \to \mathbb{R} definida por f(x) = 3x + 7 , calcule f(\sqrt{7})  -  f(\sqrt{\pi}) . A função é esta mesma ?

Não faz sentido a resposta ser 3 , pois trata de uma operação de soma entre dois números irracionais , isto é , f(\sqrt{7})  -  f(\pi)   =      3 \cdot  \sqrt{7} + 7  - (3 \cdot  \sqrt{\pi }+ 7) =  3(\sqrt{7} - \sqrt{\pi} ) . Pela ordenação dos números reais , concluímos que ,

7 >  \pi \approx 3,14  \implies   2 <\sqrt{7} <3 \ \ \     \text{e} \ \ \    1 < \sqrt{3} <  \sqrt{\pi} < 2 logo , \sqrt{7} > \sqrt{\pi}

Daí , 0 < \sqrt{7} - \sqrt{\pi}   < 1 e portanto 3(\sqrt{7} - \sqrt{\pi} )  \neq 3
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: radiciação na função

Mensagempor e8group » Qui Nov 22, 2012 11:14

Não seria isto \frac{ f(\sqrt{7}) -  f(\sqrt{\pi} )}{\sqrt{7} -  \sqrt{\pi} } ???
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: radiciação na função

Mensagempor malbec » Qui Nov 22, 2012 16:52

santhiago escreveu:Não seria isto \frac{ f(\sqrt{7}) -  f(\sqrt{\pi} )}{\sqrt{7} -  \sqrt{\pi} } ???


Boa tarde amigo Santiago! Seria essa mesmo a expressão, pois na verdade, eu não consegui colocar a expressão dessa forma aqui no quadro de dúvidas por causa das imagens. Gostaria de uma solução prática para esta questão. Agradeço desde já.
malbec
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 31, 2012 10:41
Formação Escolar: ENSINO MÉDIO
Área/Curso: formação geral
Andamento: cursando

Re: radiciação na função

Mensagempor e8group » Qui Nov 22, 2012 17:42

Vamos por partes ,

i) f(\sqrt{7}) =  3 \cdot \sqrt{7} + 7


ii) f(\sqrt{\pi}) = 3\cdot \sqrt{\pi} + 7


iii) f(\sqrt{7}) -  f(\sqrt{\pi})   =  3 \cdot \sqrt{7} + 7  - (   3\cdot \sqrt{\pi} + 7 ) = 3 \cdot \sqrt{7} + 7  - 3\cdot \sqrt{\pi} - 7    =    3 \cdot \sqrt{7}  -   3\cdot \sqrt{\pi}  = 3 \cdot ( \sqrt{7} - \sqrt{\pi} )


iv ) \frac{ f(\sqrt{7}) -  f(\sqrt{\pi})}{\sqrt{7} -  \sqrt{\pi} }  =  3 \cdot \frac{\sqrt{7} -  \sqrt{\pi} }{\sqrt{7} -  \sqrt{\pi} } = 3  \cdot b .


Para ficar compreensível vamos definir b = \frac{\sqrt{7} -  \sqrt{\pi} }{\sqrt{7} -  \sqrt{\pi} }. Perceba que quanto o numerador e o denominador são composto por numeros iguais ,disso concluímos que b = 1 e portanto ,

\frac{ f(\sqrt{7}) -  f(\sqrt{\pi})}{\sqrt{7} -  \sqrt{\pi} }  =  3 \cdot \frac{\sqrt{7} -  \sqrt{\pi} }{\sqrt{7} -  \sqrt{\pi} } = 3  \cdot b  =  3 \cdot 1  =   3 .


Exemplos quanto que é

\frac{2 +  \pi}{\pi + 2 } ?

\frac{4}{4} =  \frac{2 + 2 }{2+2} ?

\frac{ x^n + k }{x^n + k}   ,   x , n, k  \in \mathbb{R}     ,\text{tal que} \  x^n + k \neq 0 ??

Códigos usados :

i)

Código: Selecionar todos
  f(\sqrt{7}) =  3 \cdot \sqrt{7} + 7



iii)
Código: Selecionar todos


f(\sqrt{7}) -  f(\sqrt{\pi})   =  3 \cdot \sqrt{7} + 7  - (   3\cdot \sqrt{\pi} + 7 ) = 3 \cdot \sqrt{7} + 7  - 3\cdot \sqrt{\pi} - 7    =    3 \cdot \sqrt{7}  -   3\cdot \sqrt{\pi}  = 3 \cdot ( \sqrt{7} - \sqrt{\pi} )

e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?