• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por substituição trigonométrica

Integral por substituição trigonométrica

Mensagempor Crist » Seg Nov 12, 2012 20:46

Não estou conseguindo continuar esse exercício, estou aprendendo agora e tenho dúvidas se alguém puder me ajudar



\int_{4}^{5}\sqrt[2]{x^2 - 16}/ x^2 \approx 0,09

aqui desenvolvi até


\int_{4}^{5}tg^2\theta / sec\theta d\theta

agora naõ sei continuar
Crist
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Out 24, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por substituição trigonométrica

Mensagempor e8group » Qui Nov 15, 2012 15:38

Vamos fazer 4/cos(\theta) =  x de onde dx = 4 \cdot cos^{-2} \theta \cdot sin(\theta) d\theta .

Substituindo na integral , temos que ,


\int_4^5 \frac{\sqrt{x^2 - 16}}{x^2} dx = \int_4^5 \frac{\sqrt{\frac{16}{cos^2(\theta)} - 16}}{\frac{16}{cos^2(\theta)}}   4 \cdot cos^{-2} \theta \cdot sin(\theta) d\theta   = \int_4^5 \sqrt{sec^2 \theta - 1} \cdot \sin \theta  d\theta


Agora, através da relação fundamental trigonométrica cos^2(\theta) +  sin^2(\theta) =  1 multiplicando ambos lados da igualdade por 1/cos^2( \theta) e logo após somando - 1 , vamos obter que ,

tan^2(\theta) =  sec^2(\theta) - 1 que nos leva ,



\int_4^5 \sqrt{sec^2 \theta - 1} \cdot \sin \theta  d\theta =   \int_4^5 tan(\theta) sin(\theta) d\theta  =   \int_4^5  \frac{sin^2\theta}{cos\theta} d\theta  =    \int_4^5 \frac{1 - cos^2 \theta}{cos\theta} d\theta  =  \int_4^5  \frac{d\theta}{cos\theta} - \int_4^5 cos\theta d\theta


Consegue concluir ?

Qualquer dúvida , post algo .


PS.: Qual substituição você fez , para chegar até onde parou ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: