• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com Limite com raiz

Ajuda com Limite com raiz

Mensagempor GuilhermeMoreira » Qua Nov 14, 2012 00:34

Gostaria de saber como resolver este limite

\lim_{x\rightarrow2} \frac{\sqrt[3]{5x-2} - 2}{\sqrt[2]{x-1}-1}
GuilhermeMoreira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 14, 2012 00:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia química
Andamento: cursando

Re: Ajuda com Limite com raiz

Mensagempor Claudin » Qua Nov 14, 2012 01:05

Tente multiplicar pelo conjugado, talvez é uma boa saída.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda com Limite com raiz

Mensagempor e8group » Qua Nov 14, 2012 12:16

Vamos separa os limites ,

\lim_{x\to 2} \frac{\sqrt[3]{5x - 2}   - 2}{\sqrt{x-1} - 1} =  \lim_{x\to 2} \frac{\sqrt[3]{5x -2} }{\sqrt{x-1} -1}  - \lim_{x\to 2} \frac{2}{\sqrt{x-1} - 1}

Agora vamos fazer que o Claudin disse ,

\frac{\sqrt{x-1} +1}{\sqrt{x-1}+1} \left( \lim_{x\to 2} \frac{\sqrt[3]{5x -2} }{\sqrt{x-1} -1}  - \lim_{x\to 2} \frac{2}{\sqrt{x-1} - 1}  \right )


Que se resume em \lim_{x\to 2} \frac{\sqrt[3]{5x -2}(\sqrt{x-1}+1) }{|x-1| + 1}  - \lim_{x\to 2} \frac{2 (\sqrt{x-1}+1)}{|x-1| + 1} .

Como x > 0


\lim_{x\to 2} \frac{\sqrt[3]{5x - 2}   - 2}{\sqrt{x-1} - 1} =  \lim_{x\to 2} \frac{\sqrt[3]{5x -2}(\sqrt{x-1} +1)}{x}  - \lim_{x\to 2} \frac{2 (\sqrt{x-1}+1)}{x}

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}