• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]

[Logaritmo]

Mensagempor JU201015 » Ter Nov 13, 2012 21:22

Me digam se resolvi corretamente?
{log}_{4}(3{x}^{2}-11)-{log}_{4}(3x+1)=1
{log}_{4}\frac{3{x}^{2}-11}{3x+1}=1
\frac{3{x}^{2}-11}{3x+1}=4
3{x}^{2}-11=12x+4
3{x}^{2}-12x-15=0
x=5 e x=-1
Condição de existência:
3x+1>0
3x>-1
x>-1/3
Então x = 5
Obs: não consegui fazer a condição de existência de "3x²-11" !!
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor e8group » Ter Nov 13, 2012 23:40

Estar correta sim . Perceba que 3x^2 - 11 > 0 , somando 11 ambos lados vamos obter 3 x^2 > 11 , multiplicando por 1/3 segue que x^2 > 11/3 e finalmente elevando ambos lados a 1/2 , (x^2)^{1/2}  >  (11/3)^{1/2}   <  |x| que nos leva a \begin{cases} x>  \sqrt{11/3} \\ x> - \sqrt{11/3} \end{cases} .

Portanto resolva a ultima equação com estas restrições .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]

Mensagempor JU201015 » Qua Nov 14, 2012 20:26

santhiago escreveu:Estar correta sim . Perceba que 3x^2 - 11 > 0 , somando 11 ambos lados vamos obter 3 x^2 > 11 , multiplicando por 1/3 segue que x^2 > 11/3 e finalmente elevando ambos lados a 1/2 , (x^2)^{1/2}  >  (11/3)^{1/2}   <  |x| que nos leva a \begin{cases} x>  \sqrt{11/3} \\ x> - \sqrt{11/3} \end{cases} .

Portanto resolva a ultima equação com estas restrições .


Sua resposta foi muito boa!Muito obrigada^^
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59