por tigerwong » Ter Nov 13, 2012 08:52
Segundo a Associação Brasileira de Franchising, o faturamento de franquias ligadas aos setores de saúde e bem estar quase
dobrou de 2004 a 2009, pois neste período a receita total das empresas passou de 5 bilhões para 9,8 bilhões de reais. Se esse
crescimento tivesse ocorrido de forma linear, a receita total das empresas desse setor, em bilhões de reais, teria sido de
(A) 5,34 em 2005.
(B) 6,92 em 2006.
(C) 7,44 em 2007.
(D) 8,22 em 2008.
(E) 8,46 em 2008.
-
tigerwong
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Jun 24, 2012 20:49
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: formado
por tigerwong » Ter Nov 13, 2012 15:13
Cara é uma questão tão fácil que a gente acaba se embananando todo. Veleu
-
tigerwong
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Jun 24, 2012 20:49
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Permutação questão fácil
por gustavoluiss » Qui Set 15, 2011 23:43
- 6 Respostas
- 4668 Exibições
- Última mensagem por gvm

Dom Set 18, 2011 12:45
Estatística
-
- Questão fácil - Certo?
por iceman » Dom Mai 27, 2012 19:57
- 1 Respostas
- 1105 Exibições
- Última mensagem por Russman

Dom Mai 27, 2012 20:07
Números Complexos
-
- Limites - Questão fácil?
por iceman » Dom Set 16, 2012 19:10
- 1 Respostas
- 1394 Exibições
- Última mensagem por DanielFerreira

Dom Set 16, 2012 19:20
Cálculo: Limites, Derivadas e Integrais
-
- [Movimento Curvo] Questão fácil
por gustavoluiss » Ter Ago 23, 2011 14:19
- 10 Respostas
- 5465 Exibições
- Última mensagem por gustavoluiss

Qui Ago 25, 2011 00:11
Álgebra Elementar
-
- Questão fácil, me ajuda, concurso correios 2011 cesp, obriga
por jrmaialds » Seg Nov 12, 2012 16:40
- 2 Respostas
- 2571 Exibições
- Última mensagem por jrmaialds

Seg Nov 12, 2012 18:03
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.