• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequação modular ] Mostre o erro .

[Inequação modular ] Mostre o erro .

Mensagempor e8group » Seg Nov 12, 2012 21:45

Pessoal , deparei com uma questão elementar que me fez questionar sobre algo . Através de uma igualdade , nós elevamos ambos lados da igualdade ao quadrado e manteremos a igualdade verdadeira . Será mesmo ? Na minha opinião isto não vale para todos os casos .

Por exemplo , segue uma questão a seguir que o objetivo é identificar o erro na solução feito por um aluno .

Dada a inequação modular \frac{|x|}{|x+1|} \geq -1


Solução.

i) x \neq 1

ii) |x+1| \frac{|x|}{|x+1|} \geq -1 |x+1|   \implies   |x| =  - |x+1|

iii) |x|^ 2 = (- |x + 1| )^2  = |x+1|^2


iv) Como |x|^2 = x^2 e |x+1|^2 = (x+1)^2 Segue que x^2 \geq (x+ 1)^2 = x^2 +2x + 1 que da como solução - \frac{1}{2}  \geq x



Não tenho o gabarito , mas analisando acredito que o erro está na etapa ( iii) . Não estou conseguindo formula um argumento que prove o erro dele . Por favor , alguém descorda ? Se não , qual argumento você usaria ?


Entretanto quando eu começo desenvolver a questão desde o ponto inicial , eu consigo mostrar que todos valores reais exceto - 1 satisfaz \frac{|x|}{|x+1|} \geq -1 . Como segue a segue os passos a seguir .

De fato , \frac{|x|}{|x+1|} \geq -1 . Pois ,

\frac{|x|}{|x+1|} =  abs \left(\frac{x}{x+1} \right ) = abs  \left(\frac{x + 1 - 1}{x+1} \right) =  abs \left(\frac{x + 1 }{x+1} -  \frac{1}{x+1} \right) = abs \left(1 -  \frac{1}{x+1} \right) \geq 0 >  - 1   ,  x  \neq - 1 .

Quando x > - 1  , \frac{|x|}{|x+1|}  \in [0, +\infty) e quando x < - 1  , \frac{|x|}{|x+1|} \in (1,+\infty) , ou seja para quaisquer x \in \mathbb{R} \ \setminus \{-1\}temos que \frac{|x|}{|x+1|}  > -1


OBS. Usei abs para modulo , por causa da configuração da barra .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Inequação modular ] Mostre o erro .

Mensagempor e8group » Seg Nov 12, 2012 21:51

OBS .: | x |^2 = x^2 e |x+ 1| ^2  = (x+1)^2 . Isso é verdade , mas ( |x| ^2 )^(1/2) \geq  ( |x+1| ^2 )^(1/2)       \iff  |  |x| | \geq  | | x+1 | |  \iff  |x|  \geq | x+1 | .O que não é verdade para x diferente que - 1 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Inequação modular ] Mostre o erro .

Mensagempor MarceloFantini » Seg Nov 12, 2012 22:11

Primeiro, x \neq -1. Segundo, já está errado na segunda etapa. Teremos |x| \geq - |x+1|, não igual. Tome x=0. Então é claro que 0 \geq - |1| = -1, mas 0^2 \leq (-1)^2 = 1, não maior ou igual. Então o processo de elevar ao quadrado está errado.

Basta perceber que |x| \geq 0, |x+1| \geq 0 e portanto \frac{|x|}{|x+1|} \geq 0 \geq -1 para todo x \neq -1. Agora, existe outra forma, bem mais trabalhosa.

Para resolver, considere a função nos seguintes intervalos: x < -1, -1 < x \leq 0 e x>0.

No primeiro intervalo teremos -x \geq -(-(x+1)) = x+1, daí 2x \leq -1 e x \geq \frac{-1}{2}. Como assumimos x < -1, todo valor aqui é solução.

No segundo intervalo teremos -x \geq -(x+1) = -x -1, que nos leva a 0 \geq -1 que é verdadeiro sempre. Portanto -1 < x \leq 0 são soluções.

No terceiro e último intervalo teremos x \geq -(x+1) = -x -1, que nos leva a 2x \geq -1 e x \geq \frac{-1}{2}. Como assumimos x > 0, todo valor é solução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Inequação modular ] Mostre o erro .

Mensagempor e8group » Seg Nov 12, 2012 22:27

Peço desculpas digitei errado na segunda etapa é maior ou igual , não igual . Agradeço muito , gostei muito da resolução .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: