• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial]

[Equação exponencial]

Mensagempor JU201015 » Dom Nov 11, 2012 19:22

Se {2}^{x}+{2}^{-x}=3, o valor de {8}^{x}+{8}^{-x} é?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor DanielFerreira » Dom Nov 11, 2012 19:58

\\ 2^x + 2^{- x} = 3
 \\\\ \left ( 2^x + \frac{1}{2^x} \right ) = 3
 \\\\\\ \left ( 2^x + \frac{1}{2^x} \right )^3 = 3^3
 \\\\\\ 2^{3x} + 3 \cdot 2^{2x} \cdot \frac{1}{2^x} + 3 \cdot 2^{x} \cdot \frac{1}{2^{2x}} + \frac{1}{2^{3x}} = 27 
 \\\\\\ 2^{3x} + 3 \cdot 2^x + 3 \cdot \frac{1}{2^x} + \frac{1}{2^{3x}} = 27
 \\\\\\ 2^{3x} + 3 \left ( 2^x + \frac{1}{2^x} \right ) + \frac{1}{2^{3x}} = 27
 \\\\\\ (2^3)^x + 3 \cdot 3 + \frac{1}{(2^3)^{x}} = 27
 \\\\\\ 8^x + 9 + \frac{1}{8^{x}} = 27
 \\\\\\ 8^x + 8^{- x} = 27 - 9
 \\\\\\ \boxed{8^x + 8^{- x} = 18}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação exponencial]

Mensagempor JU201015 » Dom Nov 11, 2012 22:33

danjr5 escreveu:\\ 2^x + 2^{- x} = 3
 \\\\ \left ( 2^x + \frac{1}{2^x} \right ) = 3
 \\\\\\ \left ( 2^x + \frac{1}{2^x} \right )^3 = 3^3
 \\\\\\ 2^{3x} + 3 \cdot 2^{2x} \cdot \frac{1}{2^x} + 3 \cdot 2^{x} \cdot \frac{1}{2^{2x}} + \frac{1}{2^{3x}} = 27 
 \\\\\\ 2^{3x} + 3 \cdot 2^x + 3 \cdot \frac{1}{2^x} + \frac{1}{2^{3x}} = 27
 \\\\\\ 2^{3x} + 3 \left ( 2^x + \frac{1}{2^x} \right ) + \frac{1}{2^{3x}} = 27
 \\\\\\ (2^3)^x + 3 \cdot 3 + \frac{1}{(2^3)^{x}} = 27
 \\\\\\ 8^x + 9 + \frac{1}{8^{x}} = 27
 \\\\\\ 8^x + 8^{- x} = 27 - 9
 \\\\\\ \boxed{8^x + 8^{- x} = 18}


Muito obrigada! Entendi bem. Mas, esse negócio de elevar ao cubo eu nunca pensaria =s kk
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor DanielFerreira » Qua Nov 14, 2012 23:25

;)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59