• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de uma Função

Derivada de uma Função

Mensagempor Tixa11 » Dom Nov 11, 2012 13:24

Como derivo a função f(x)=(arctg(ln(cos({x}^{2}))) ?

Não estou a conseguir...
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Derivada de uma Função

Mensagempor e8group » Dom Nov 11, 2012 14:44

Nestes casos eu gosto de decompor a função por composição .considerando ,

g(x)   = arctan (x)  ,   j(x)  = ln(x) ,   h(x) =  cos(x) e k(x) =  x^2 podemos rescrever f(x) como , g(j(h(k(x) ) .


Daí , f'(x)  =  [   g(j(h(k(x) )] '   =    g' (j(h(k(x) ) \cdot  j'(h(k(x)) \cdot  h'( k(x) ) \cdot  k'(x)

Derivando cada uma em relação a x ,

k'(x) =   2x

h'( k(x) )   =    - sin( 2x)

j'(h(k(x))    =     \frac{1}{cos(x^2) }


g' (j(h(k(x) )  =   \frac{1}{ (ln(cos(x^2) ) )^2 +1  }


conclusão , f'(x)   =   \frac{1}{[ (ln(cos(x^2) ) )^2 +1  ] } \cdot  \frac{1}{cos(x^2) } \cdot  (-sin( 2x) ) 2x


Por favor , comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada de uma Função

Mensagempor Tixa11 » Dom Nov 11, 2012 20:05

santhiago escreveu:Nestes casos eu gosto de decompor a função por composição .considerando ,

g(x)   = arctan (x)  ,   j(x)  = ln(x) ,   h(x) =  cos(x) e k(x) =  x^2 podemos rescrever f(x) como , g(j(h(k(x) ) .


Daí , f'(x)  =  [   g(j(h(k(x) )] '   =    g' (j(h(k(x) ) \cdot  j'(h(k(x)) \cdot  h'( k(x) ) \cdot  k'(x)

Derivando cada uma em relação a x ,

k'(x) =   2x

h'( k(x) )   =    - sin( 2x)

j'(h(k(x))    =     \frac{1}{cos(x^2) }


g' (j(h(k(x) )  =   \frac{1}{ (ln(cos(x^2) ) )^2 +1  }


conclusão , f'(x)   =   \frac{1}{[ (ln(cos(x^2) ) )^2 +1  ] } \cdot  \frac{1}{cos(x^2) } \cdot  (-sin( 2x) ) 2x


Por favor , comente qualquer dúvida .




Muito obrigado pela ajuda. Realmente é muito mais simples assim :)
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59