• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[matriz]

[matriz]

Mensagempor anneliesero » Qui Nov 08, 2012 16:21

Gente, porque a minha não está dando certo?

Eu fiz assim: \begin{pmatrix}
   x & 1 & 2  \\ 
   3 & y & 5 \\
   2 & 3 & z
\end{pmatrix}.
\begin{pmatrix}
   x & 0 & 0 \\
   0 & y & 0\\
   0 & 0 & z
 
\end{pmatrix}=\begin{pmatrix}
   2 & 3 & 10 \\
   6 & 12 & 25\\
   4 & 9 & 20
 
\end{pmatrix}

a11= 2x+0+0=2x=2 x=2

a22= 0+2y+0=2y=12 y=6

a33= 0+0+2z=20 z=10


A resposta certa é a B( 1,4,4) :y:


(MACK) Sabe-se que A=\begin{pmatrix}
   x & 1 & 2 \\ 
   3 & y & 4   \\
   2 & 3 & z
\end{pmatrix}, B= \left({b}_{ij} \right){}_{3x3}, é uma matriz diagonal, ou seja, {b}_{ij}=0 se i diferente j e AB= 
\begin{pmatrix}
   2 & 3 & 10 \\ 
   6 & 12 & 25 \\
    4 & 9 & 20
\end{pmatrix}. Os valores de x, y e z são respectivamente:


a) 2,3, 4
b)1, 4, 4
c) 7,7,7
d) 2,3,1
e)1,1,1
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [matriz]

Mensagempor e8group » Sáb Nov 24, 2012 09:25

Veja que a segunda matriz à esquerda da igualdade é diagonal .Portanto , tomar o produto ,

\begin{bmatrix}
x &1  &2 \\ 
 3&y  &5 \\     
 2& 3 & 3
\end{bmatrix}  \cdot   \begin{bmatrix}
x &0  &0 \\ 
 0&y  &0 \\     
 0& 0 & z
\end{bmatrix}

é o mesmo que ,

\begin{bmatrix}
 x\begin{bmatrix}x &1  &2  \end{bmatrix}\\ 
y\begin{bmatrix}x &1  &2  \end{bmatrix} \\     
 z\begin{bmatrix}x &1  &2  \end{bmatrix}
\end{bmatrix}     = \begin{bmatrix}
x^2 &x  &2x \\ 
 3y&y^2  &5y \\     
 2z& 3z & 3z
\end{bmatrix}

Basta achar condições para x,y,z tal que os elementos da matriz à esquerda da igualdade sejam igual ao mesmo a direita da igualdade .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.