• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Bola de beisebol

Sub-seção para materiais das disciplinas relacionadas ao Instituto de Física.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.

Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.

Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.

O intuito deste compartilhamento é favorecer um estudo complementar.

Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.

Bola de beisebol

Mensagempor Cleyson007 » Qua Nov 07, 2012 16:55

Uma bola de beisebol deixa o bastão do batedor com uma velocidade inicial de v0 = 37,0m/s com um ângulo inicial de {\alpha}_{0}=53,1° em um local onde g = 9,8 m/s².

a) Ache a posição da bola e o módulo, a direção e o sentido de sua velocidade para t = 2,0s.

b) Calcule o tempo que a bola leva para atingir a altura máxima de sua trajetória e ache a altura h nesse ponto.

c) Ache o alcance horizontal R, ou seja, a distância entre o ponto inicial e o ponto onde a bola atinge o solo.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Bola de beisebol

Mensagempor Neperiano » Qua Nov 07, 2012 17:01

Olá

Cleyson, vou fazer um pouco diferente de nosso colega antes, não vou resolver a questão como ele, mas vou tentar de dar as dicas.

Primeiro, desenhe a situação, nela você notará que haverá uma velocidade inicial inclinada a 53,1 com x, logo haverá uma velocidade em x, e uma em y. Certo?

A pergunta é achar a posição da bola, ai vem a grande questão, a posição em x ou em y? Na dúvida sempre calcule as duas, o que eu acho que deve fazer.

Lembrando que isto é movimento bidimensional.

Para calcular a posição em x, você precisará da equação:

x=xo+vx.t

Na qual você possui todos os valores, lembrando que você precisa transformar sua velocidade inicial, em vx e voy.

Quando calcular em y, deverá usar a equação:

y=yo+voy.t+(g.t^2)/2

Que novamente você tem todos os valores.

Depois é necessário o módulo da velocidade, o módulo da velocidade será o "pitagoras" da velocidade em x neste ponto e a velocidade em y neste ponto, como foi feito na questão anterior.

Vou deixar você tentar quebrar a cabeça agora, qualquer dúvida.

Att
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Bola de beisebol

Mensagempor Cleyson007 » Qua Nov 07, 2012 17:27

Olá Neperiano!

A figura que ilustra a situação:

Imagem

Minha dúvida é quanto ao ângulo que aparece no enunciado.. Qual fórmula? Como encontrá-la?

Fico te aguardando.

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Bola de beisebol

Mensagempor MarceloFantini » Qua Nov 07, 2012 18:15

A velocidade horizontal da bola não muda, mas a velocidade vertical sim. As equações são v_x = v_0 \cos \alpha_0 e v_y = v_0 \sin \alpha_0 - gt.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Bola de beisebol

Mensagempor Cleyson007 » Qua Nov 07, 2012 21:00

Minha dúvida é: Como foram encontradas essas equações?
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Bola de beisebol

Mensagempor MarceloFantini » Qua Nov 07, 2012 23:13

Decomponha o vetor nos eixos. Não há aceleração no eixo horizontal, mas há a aceleração na vertical devido á gravidade.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Bola de beisebol

Mensagempor Cleyson007 » Qui Nov 08, 2012 15:05

Outra dúvida: Como calculo o alcance horizontal?
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Bola de beisebol

Mensagempor MarceloFantini » Qui Nov 08, 2012 17:00

A distância percorrida será x = x_0 + v_{0_x} t. Se ele partir da origem, temos x_0=0. Ele irá parar quando atingir o chão, ou seja, você precisa encontrar o instante em que a vertical se anula novamente. Achando este instante, basta substituir na equação e você terá a resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Física

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: