• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de equações

Sistemas de equações

Mensagempor Danilo Dias Vilela » Ter Set 15, 2009 00:04

Por favor me ajudem com este exercício: 1) Uma loja vende três tipos de lâmpada (x, y e z). Ana comprou 3 lâmpadas tipo x, 7 tipo y e 1 tipo z, pagando R$ 42,10 pela compra. Beto comprou 4 lâmpadas tipo x, 10 tipo y e 1 tipo z, o que totalizou R$ 47,30. Nas condições dadas, quanto custa, nessa loja, a compra de três lâmpadas, sendo uma de cada tipo?

Minha resolução: Cheguei a duas equações 3x+7y +z = 42,10 e 4x + 10y + z = 47,30. Quando vou resolver o sistema chego a um sistema possível e inderterminado. Agora não sei se devo somar os dois sistema para a construção de um terceiro. Se puderem me ajudar.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Sistemas de equações

Mensagempor Elcioschin » Ter Set 15, 2009 09:42

Danilo

3x + 7y + z = 42,10 ----> I
4x + 10y + z = 47,30 ----> II

Subtraindo a 1ª equação da 2ª ----> x + 3y = 5,20 ----> x = 5,20 - 3y ----> III

O máximo que se pode descobrir é que y < 1,74, para se obter x > 0

Logo, o teu problema é realmente indeterminado

Deve estar faltando algum dado no enunciado.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Sistemas de equações

Mensagempor Danilo Dias Vilela » Ter Set 15, 2009 13:24

O exercício é assim como digitei. Realmente acho que está faltando alguma coisa ou a resposta é esta mesmo. Obrigado.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Sistemas de equações

Mensagempor rah_marques » Qui Out 08, 2009 23:17

O pior é que apesar do trabalho que dá pra pensar nessa questão, a resolução fica super simples:

3x + 7y + 3z = 42,1 x 3
4x + 10y + z = 47,3 x (-2)


9x + 21y + 3z = 126,3
-8x - 20y - 2z = - 94,6
-----------------------------
x + y + z = 31,7


Espero ter ajudado!
rah_marques
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 08, 2009 23:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistemas de equações

Mensagempor Danilo Dias Vilela » Ter Out 13, 2009 09:15

Valeu Marques obrigado. Conferi e realmente a solução é esta mesmo.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}