• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Funções Principais - Análise] Vértice

[Funções Principais - Análise] Vértice

Mensagempor raimundoocjr » Ter Nov 06, 2012 21:14

01. Qual é o valor do "y" ("{y}_{v}") no vértice?
Imagem

Tentativa de Resolução;
Pensei em montar equações referentes aos "Sistemas Lineares". Mas, não consegui prosseguir. Para começar, imaginei as formas: f(x)=ax²+bx+c e f(x)=ax+b.

Gabarito: 12
raimundoocjr
 

Re: [Funções Principais - Análise] Vértice

Mensagempor young_jedi » Qua Nov 07, 2012 11:40

voce começou corretamente veja que a equação da reta sera

y=2x

ja a da parabola sera

y=ax^2+bx+c

veja que a parabola corta o exio y em 9 ou seja quando x=0, dai tiramos que c=9 portanto a equação da parabola fica

y=ax^2+bx+9

temos que o vertice da parabola é dado por

x_v=-\frac{b}{2a}

y_v=-\frac{b^2-4a.9}{4a}

como é um ponto pertencente a reta y=2x então

y_v=2x_v

-\frac{2b}{2a}=-\frac{b^2-36a}{4a}

b^2-4b-36a=0

do grafico tambem tiramos que x=18 é raiz da equação

ax^2+bx+9=0

ou seja

a18^2+b18+9=0

36a+2b+1=0

36a=-1-2b

substituindo na outra equação

b^2-4b+1+2b=0

b^2-2b+1=0

(b-1)^2=0

b=1

agora é so determinar a e depois determinar o vertice
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.