• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Tendência ao infinito

[Limite] Tendência ao infinito

Mensagempor KleinIll » Qua Out 31, 2012 15:04

\lim_{x\rightarrow\infty} \frac{\sqrt[2]{9{x}^{6} - x}}{{x}^{3} + 1}

Alguém pode explicar como resolver?

Reposta: 3
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor MarceloFantini » Qua Out 31, 2012 19:04

\frac{\sqrt{9x^6 -x}}{x^3 +1} = \frac{\sqrt{9x^6 \left( 1 - \frac{1}{9x^5} \right)}}{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3x^3 \sqrt{ 1 - \frac{1}{9x^5} } }{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) },

logo

\lim_{x \to \infty} \frac{\sqrt{9x^6 -x}}{x^3 +1} = \lim_{x \to \infty} \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) } = 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor KleinIll » Qua Out 31, 2012 23:50

MarceloFantini escreveu:\frac{\sqrt{9x^6 -x}}{x^3 +1} = \frac{\sqrt{9x^6 \left( 1 - \frac{1}{9x^5} \right)}}{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3x^3 \sqrt{ 1 - \frac{1}{9x^5} } }{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) },

logo

\lim_{x \to \infty} \frac{\sqrt{9x^6 -x}}{x^3 +1} = \lim_{x \to \infty} \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) } = 3.


Obrigado, mas eu ainda não entendi. Se não for abusar, poderia explicar porque o limite é igual a três?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor MarceloFantini » Sex Nov 02, 2012 07:49

Lembre-se do limite \lim_{x \to \infty} \frac{1}{x} = 0. Consequentemente, \lim_{x \to \infty} \frac{1}{x^n} = 0 para n > 0. A partir daí, usando as propriedades de limite, temos

\lim_{x \to \infty} \frac{3 \sqrt{1 - \frac{1}{9x^5} }}{1 + \frac{1}{x^3} } = \frac{3 \lim_{x \to \infty} \sqrt{1 - \frac{1}{9x^5}}}{\lim_{x \to \infty} 1 + \frac{1}{x^3}}

= 3 \frac{\sqrt{ \lim_{x \to \infty} 1 - \frac{1}{9x^5} } }{ 1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - \lim_{x \to \infty} \frac{1}{9x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} }

3 \frac{ \sqrt{ 1 - \frac{1}{9} \lim_{x \to \infty} \frac{1}{x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - 0} }{ 1 + 0} = 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor KleinIll » Sex Nov 02, 2012 10:25

MarceloFantini escreveu:Lembre-se do limite \lim_{x \to \infty} \frac{1}{x} = 0. Consequentemente, \lim_{x \to \infty} \frac{1}{x^n} = 0 para n > 0. A partir daí, usando as propriedades de limite, temos

\lim_{x \to \infty} \frac{3 \sqrt{1 - \frac{1}{9x^5} }}{1 + \frac{1}{x^3} } = \frac{3 \lim_{x \to \infty} \sqrt{1 - \frac{1}{9x^5}}}{\lim_{x \to \infty} 1 + \frac{1}{x^3}}

= 3 \frac{\sqrt{ \lim_{x \to \infty} 1 - \frac{1}{9x^5} } }{ 1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - \lim_{x \to \infty} \frac{1}{9x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} }

3 \frac{ \sqrt{ 1 - \frac{1}{9} \lim_{x \to \infty} \frac{1}{x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - 0} }{ 1 + 0} = 3.


Perfeito! Muito obrigado.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?