• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação vetorial da reta

Equação vetorial da reta

Mensagempor Danilo » Qua Out 31, 2012 02:36

Dados os planos \alpha1: x-y+z+1 = 0 e \alpha2 : x+y-z-1=0, determine o plano que contém \alpha1
interseção com \alpha2 e é ortogonal ao vetor (1,1,-1).

Bom, sei que a interseção entre dois planos é uma reta... e como encontrar equação de planos e retas mas não sei como aplicar no exercício. Grato desde já!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação vetorial da reta

Mensagempor MarceloFantini » Qua Out 31, 2012 07:12

Encontre a reta que é interseção de \alpha_1 com \alpha_2. Uma forma de fazer é encontrar um vetor (a,b,c) tal que o produto vetorial dele com o vetor diretor da reta seja (1,1,-1).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação vetorial da reta

Mensagempor Danilo » Sex Nov 02, 2012 02:38

MarceloFantini escreveu:Encontre a reta que é interseção de \alpha_1 com \alpha_2. Uma forma de fazer é encontrar um vetor (a,b,c) tal que o produto vetorial dele com o vetor diretor da reta seja (1,1,-1).


Bom, a primeira coisa que fiz foi fazer o produto vetorial das normais dos planos dados. Para mim, a normal encontrada será o vetor diretor da reta que quero encontrar (corrijam-me se eu estiver errado.). Aí depois eu encontrei o ponto (0,1,0) que é a solução do sistema dos planos dados... e encontrei uma equação (que nao corresponde a resposta correta...). Onde estou errando?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação vetorial da reta

Mensagempor MarceloFantini » Sex Nov 02, 2012 08:23

Danilo escreveu:Bom, a primeira coisa que fiz foi fazer o produto vetorial das normais dos planos dados. Para mim, a normal encontrada será o vetor diretor da reta que quero encontrar (corrijam-me se eu estiver errado.). Aí depois eu encontrei o ponto (0,1,0) que é a solução do sistema dos planos dados... e encontrei uma equação (que nao corresponde a resposta correta...). Onde estou errando?

O produto vetorial realmente é o vetor diretor da reta que você quer encontrar, mas você quer encontrar um plano. A outra condição que este plano deve satisfazer é ser ortogonal a (1,1,-1), logo tome um vetor que seja ortogonal a ele, como (-1,0,1).

Todas as condições foram satisfeitas agora. A equação será r: (0,1,0) + t(a_1,a_2,a_3) + r(-1,0,1), onde (a_1,a_2,a_3) é o vetor que você encontrou no produto vetorial.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.