• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[tecnicas de integraçao por partes (u)(dv)]

[tecnicas de integraçao por partes (u)(dv)]

Mensagempor menino de ouro » Ter Out 30, 2012 18:21

\int{e}^{2x}cos(x )dx

eu começei assim : chamei u de : {e}^{2x} entao du = {2e}^{2x}dx chamei dv : cos( x )dx então v = sen(x)

utilizando a formula da integral por partes (u)(dv): \int u dv=uv-\int vdu

encontrei: {e}^{2x}sen(x)- \int {2e}^{2x}sen(x)dx agora eu tenho que resolver a nova integral? correto? para que? ainda não sei direito o porque?

como continua esse exercicio ? eu sei que a resposta tem que dar : \frac{{e}^{2x}(sen(x)+2cos(x)}{5} + c


nao sei como chegar até aqui ,gostaria de aprender como que se resolve de uma maneira mais facil de entender! obrigado
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: [tecnicas de integraçao por partes (u)(dv)]

Mensagempor MarceloFantini » Ter Out 30, 2012 21:00

Sim, agora você tem que resolver \int 2 e^{2x} \sin x \, dx. Quando você resolver esta nova integral você voltará à integral original. A partir disso, você substitui a primitiva que encontrar, que terá a integral original, e resolva para encontrar a primitiva. Se não ficar muito claro, poste os novos cálculos que discutiremos passo a passo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [tecnicas de integraçao por partes (u)(dv)]

Mensagempor menino de ouro » Ter Out 30, 2012 22:26

u=  {2e}^{2x} du = {4e}^{2x}dx


dv =sen(x)dx

v= cos(x)





(1).\int{e}^{2x}= {e}^{2x}sen(x)+{2e}^{2x}cos(x)-(4).\int{e}^{2x}cos(x).dx

(1+4)\int{e}^{2x}cos(x)= {e}^{2x}(sen(x)+2(cos(x)+c

feito isso cheguei ao resultado esperado , acho que é isso?

obrigado!

vçe , sabe se existe algumas vídeo aulas (youtube, ou outro lugar ) que mostre exemplos de [ técnicas de integração-integraçao de potencias e produtos de funções trigonométricas?]

tipo : \int{cos}^{5}(x)sen(x)dx, \int cos7(x)cos3(x)dx,

agradeço,Marcelo
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: [tecnicas de integraçao por partes (u)(dv)]

Mensagempor MarceloFantini » Ter Out 30, 2012 22:39

Você errou ao afirmar que dv = \sin x \, dx implica em v = \cos x, pois na verdade é v = - \cos x. Devido ao sinal de menos na integral anterior eles cancelaram-se e você chegou na resposta certa, mas tome cuidado da próxima vez. No mais, está tudo correto.

Existem as vídeo-aulas do nosso colega Luiz Aquino no Youtube, elas podem te ajudar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.