• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação

Potenciação

Mensagempor ViniRFB » Ter Out 30, 2012 18:03

\left( \frac {3}{2}^\frac {1}{2}\right) ^{2}


Pessoal como eu resolvo isso?

Please.

Desde já agradeço.
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor Cleyson007 » Ter Out 30, 2012 20:49

{3}^{\frac{1}{2}}=\sqrt[]{3}

Logo, \left(\frac{\sqrt[]{3}}{2} \right)^2=\frac{3}{4}
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Potenciação

Mensagempor MarceloFantini » Ter Out 30, 2012 20:54

É só usar as propriedades que \left( \frac{a}{b} \right)^c = \frac{a^c}{b^c} e (d^e)^f = d^{e \cdot f}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor ViniRFB » Qua Out 31, 2012 00:09

MarceloFantini escreveu:É só usar as propriedades que \left( \frac{a}{b} \right)^c = \frac{a^c}{b^c} e (d^e)^f = d^{e \cdot f}.



Essa propriedade seria o quê? Derivada?
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor ViniRFB » Qua Out 31, 2012 00:14

Cleyson007 escreveu:{3}^{\frac{1}{2}}=\sqrt[]{3}

Logo, \left(\frac{\sqrt[]{3}}{2} \right)^2=\frac{3}{4}



Porque usou apenas a propriedade no numerador e deixou o denominados no caso 2 no mesmo lugar?


Amigo tem como dar o passo a passo para que eu entenda, na verdade n entendi. Me falta a base nesse conteúdo.


Grato
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor MarceloFantini » Qua Out 31, 2012 06:55

Não, aquelas propriedades não são derivada, muito longe disso.

A primeira propriedade diz que se temos uma fração elevada a um expoente, isto é a mesma coisa que a fração que tem o numerador elevado a esse expoente e o denominador também elevado ao mesmo expoente.

A segunda propriedade diz que quando temos um número elevado a um expoente, e você eleva tudo à outro expoente, o efeito que isso produz é multiplicar, e não somar, os expoentes.

O que o Cleyson fez foi aplicar ambas, como eu sugeri: no numerador, você já tem um expoente no numerador (\sqrt{3}), que ao ser elevado por 2 temos (\sqrt{3})^2 = (3^{\frac{1}{2}})^2 = 3^{\frac{1}{2} \cdot 2}} = 3^{1} = 3, enquanto que no denominador é só elevar, 2^2 = 4.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor ViniRFB » Sex Nov 02, 2012 14:06

MarceloFantini escreveu:Não, aquelas propriedades não são derivada, muito longe disso.

A primeira propriedade diz que se temos uma fração elevada a um expoente, isto é a mesma coisa que a fração que tem o numerador elevado a esse expoente e o denominador também elevado ao mesmo expoente.

A segunda propriedade diz que quando temos um número elevado a um expoente, e você eleva tudo à outro expoente, o efeito que isso produz é multiplicar, e não somar, os expoentes.

O que o Cleyson fez foi aplicar ambas, como eu sugeri: no numerador, você já tem um expoente no numerador (\sqrt{3}), que ao ser elevado por 2 temos (\sqrt{3})^2 = (3^{\frac{1}{2}})^2 = 3^{\frac{1}{2} \cdot 2}} = 3^{1} = 3, enquanto que no denominador é só elevar, 2^2 = 4.



Obrigado mais uma vez. Creio que eu tenha Entendido.
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}