• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio sobre vetores "calcule (u + v) . (u - v)"

Exercicio sobre vetores "calcule (u + v) . (u - v)"

Mensagempor Tiago » Sáb Set 12, 2009 18:37

Vejam bem a questão é essa abaixo.
Se | u | = | v |, calcule (u + v) . (u - v). Represente estas operações numa figura plana.
De todas as formas que eu calculei o resultado é zero.
se a multiplicação do soma e subtração obtendo de u e v o valor zero.
penso que sendo o valor zero o angulo formado por eles é 90º, são ortogonais.
Não sei resolver essa questão com muita clareza, peço ajuda para iniciar uma linha de raciocinio mais clara
para mim poder continuar até que seja solucionado.
Obrigado.
Tiago
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Set 12, 2009 18:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Exercicio sobre vetores "calcule (u + v) . (u - v)"

Mensagempor Tiago » Dom Set 13, 2009 09:28

Fui procurar ajuda e tive a certeza que:
(u + v).(u - v) = u.u - u.v + v.u - v.v
(u + v).(u - v) = |u|² - u.v + u.v - |v|²
(u + v).(u - v) = |u|² - |v|² = 0

Então, realmente (u + v) e (u - v) são perpendiculares.
Tiago
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Set 12, 2009 18:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.