• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivado] Isolando Variável

[Derivado] Isolando Variável

Mensagempor Niiseek » Seg Out 29, 2012 16:40

Boa tarde,
Estou no primeiro ano de ciência da computação e uma professora minha passou uma lista de exercícios. Alguns eu acabei conseguindo fazer mas o que eu não consegui nem chegar na metade foi este:

1) Um pequeno empresário produz dois tipos diferentes de teclados para computadores. A função total estimada é c(x)=x²+2y²-xy, sendo x e y número de unidades fabricadas do tipo 1 e 2, respectivamente. Considerando esses dois modelos, a capacidade de produção mensal é de 80 uni. Quantos teclados de cada tipo devem ser produzidos para que o custo seja mínimo?

Não estou conseguindo isolar o Y para depois substituir na equação. Alguém pode me ajudar?
Niiseek
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 29, 2012 16:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Derivado] Isolando Variável

Mensagempor young_jedi » Seg Out 29, 2012 17:17

tendo que a quantidade de produção é de 80 unidades, então

x+y=80

y=80-x

sendo assim

c(x)=x^2+2(80-x)^2-x(80-x)

c(x)=x^2+2x^2-320x+12800-80x+x^2

c(x)=4x^2-400x+12800

para achar o ponto de minimo da função basta derivar e igular a zero, com isso voce encotra-ra o valor de x e depois o de y
comente qualquer duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivado] Isolando Variável

Mensagempor Niiseek » Seg Out 29, 2012 17:18

Muito obrigado!
Niiseek
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 29, 2012 16:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Derivado] Isolando Variável

Mensagempor Niiseek » Seg Out 29, 2012 17:28

Me corrija se eu estivar errado:

c (x) = 4x² - 400x + 12800

c ' (x) = 8x - 400
c ' (x) = 0

8x - 400 = 0
8x = 400
x = 400/8 => x = 50

Voltando pra substituir o Y
c (y) = x² + 2y² - xy
c (y) = 50² + 2y² - 50.y
c (y) = 2y² - 50y + 2500

c ' (y) = 4y - 50
c ' (x) = 0

4y - 50 = 0
4y = 50
y = 50/4 => y = 25

Aqui seria x=50 e y=25 o ponto de mínimo?
Niiseek
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 29, 2012 16:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Derivado] Isolando Variável

Mensagempor young_jedi » Seg Out 29, 2012 17:34

voce derivou corretamente e encontrou o valor correto de x

mais para encontrar y, voce pode substituir nessa outra equação

x+y=80

y=30

voce ja encontra o valor direto de forma mais simples

aquela substituição que voce fez não esta correta
oque voce deveria fazer era substituir y=80-x

e aplicar o mesmo procedimento, mais seria complicar demais sendo que da para fazer mais simples
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivado] Isolando Variável

Mensagempor Niiseek » Seg Out 29, 2012 17:39

Acabei fazendo 2 equações distintas ao invés de trabalhar elas juntas, isso que percebi lendo o que você escreveu, mas de qualquer forma seguei com sua ajuda na resposta. Não conhecia o fórum, mas agora que estou trarei minhas dúvidas e ajudarei os outros.
:)
Niiseek
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 29, 2012 16:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59