por Fabio Wanderley » Seg Out 22, 2012 23:15
Olá,
segue o exercício
Um aluno, ao calcular a integral
![\int_{-1}^{1}\sqrt[]{1+x^2}dx \int_{-1}^{1}\sqrt[]{1+x^2}dx](/latexrender/pictures/5f67c95a6257ba5c4a4fd83801628a36.png)
, raciocinou da seguinte forma: fazendo a mudança de variável

, os novos extremos de integração seriam iguais a 2

e assim a integral obtida após a mudança de variável seria igual a zero e, portanto,
![\int_{-1}^{1}\sqrt[]{1+x^2} \ dx=0 \int_{-1}^{1}\sqrt[]{1+x^2} \ dx=0](/latexrender/pictures/0ec803b84ab00e3af1771e750fa800a1.png)
.
Onde está o erro?
-------------------
Bom, se os intervalos de integração são os mesmo, a integral não deveria ser igual a zero??De qualquer forma, fazendo o que o aluno fez e derivando a variável "u", eu cheguei a isso:
![\int_{2}^{2}\sqrt[]{u} \ 2x \ dx \int_{2}^{2}\sqrt[]{u} \ 2x \ dx](/latexrender/pictures/95d78d66aa1f4faf25411c57e5dbf30b.png)
O fato de ter a variável "u" com "x dx" no integrando deixa a resolução errada?
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por MarceloFantini » Ter Out 23, 2012 00:16
Sim, pois você não alterou completamente a variável de integração.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Fabio Wanderley » Ter Out 23, 2012 00:24
MarceloFantini escreveu:Sim, pois você não alterou completamente a variável de integração.
Marcelo,
Então o erro é exatamente esse: " ter a variável "u" com "x dx" no integrando"?
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral por partes] onde está o erro???
por Fabio Wanderley » Seg Mai 28, 2012 20:21
- 2 Respostas
- 2486 Exibições
- Última mensagem por Fabio Wanderley

Ter Mai 29, 2012 13:42
Cálculo: Limites, Derivadas e Integrais
-
- Sistemas Lineares: "a, b e c" como "soluções".
por allendy » Qua Set 08, 2010 20:28
- 2 Respostas
- 11307 Exibições
- Última mensagem por allendy

Qua Set 08, 2010 20:37
Sistemas de Equações
-
- [LIMITES] Limite de Raiz "m" de "infinito"
por antonelli2006 » Sáb Set 17, 2011 05:56
- 5 Respostas
- 9194 Exibições
- Última mensagem por LuizAquino

Dom Set 18, 2011 10:08
Cálculo: Limites, Derivadas e Integrais
-
- Matriz constituida de "uns" e "zeros"
por Carolziiinhaaah » Qui Jun 24, 2010 12:08
- 2 Respostas
- 5743 Exibições
- Última mensagem por Carolziiinhaaah

Qui Jun 24, 2010 12:50
Matrizes e Determinantes
-
- Ajuda para encontrar o "u" na integral
por vmouc » Sex Jun 10, 2011 15:25
- 3 Respostas
- 2423 Exibições
- Última mensagem por vmouc

Sáb Jun 11, 2011 21:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.