• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida em um calculo de função, ajudem por favor!

Duvida em um calculo de função, ajudem por favor!

Mensagempor paulohenrique_ » Seg Out 22, 2012 16:29

Uma construtora deseja cercar um terreno de 1000m² para sua sede, em três de seus lados, deixando o quarto lado para a construção. Seu objetivo como Engenheiro é projetar isso, de forma a usar o mínimo de muro.
A) Sejam x e y as dimensões do tereno e L o comprimento da cerca requerido para cercar aquelas dimensões. Como a área é de 1000m², devemos ter xy=1000. Ache uma fórmula para L em termos de x e de y e então expresse L em termos só de x usando a quação da área.

B) Há restrições sobre os valores de x? Justifique.

Por faor me ajudem a resolver essa questão.
paulohenrique_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 16:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: engenharia
Andamento: cursando

Re: Duvida em um calculo de função, ajudem por favor!

Mensagempor Russman » Seg Out 22, 2012 17:04

O que você tentou fazer?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Duvida em um calculo de função, ajudem por favor!

Mensagempor paulohenrique_ » Seg Out 22, 2012 17:14

Russman escreveu:O que você tentou fazer?

então estava me baseando em outro exercício que me pareceu meio identico porém é em metros e este que estou quebrando a cabeça é em metros². O exercício parecido que consegui resolver eu fiz assim era um quadrado, o mesmo dividi o valor dado em metros que era 200 pra 50 cada lado do quadrado usei x e y no caso x vale duas partes do quadrado e y as outras duas, então desenvolvi chamando a area total de perimetro 200m e apliquei A=X.Y resultou em x(100-x) depois eu joguei o que consegui nessa formula y=ax²+bx+c porém este exercício que estou com dificuldade só quer tres partes do terreno deixando uma aberta, estou quebrando a cabeça e não consigo. Obrigado se conseguir solucionar minha dúvida.
paulohenrique_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 16:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: engenharia
Andamento: cursando

Re: Duvida em um calculo de função, ajudem por favor!

Mensagempor Russman » Seg Out 22, 2012 18:20

Se L é o comprimento requerido da cerca do terreno então este é o perímetro do mesmo. Logo, L=2x+y, supondo que o terreno seja retangular e que o lado sem cerca seja o de comprimento y.
Como você sabe o valor que deve medir a área desse terreno, os 1000 m², você tem a relação x.y=1000 de onde , isoladamente, os valores de y com relação aos de x são dados por y=\frac{1000}{x}. Dessa forma,

L=2x+y \Rightarrow L=2x+\frac{1000}{x}

Veja que se x=0 o valor do perímetro não se define. Logo, existe a restrição x\neq 0.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?