• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa de variação

Taxa de variação

Mensagempor manuela » Qui Out 18, 2012 20:02

A temperatura em graus Celsius num ponto (x,y,z) de um sólido metálico é dado por:
T(x,y,z)= \frac{xyz}{1+x^2+y^2+z^2}

a) Determine a taxa de variação da temperatura no ponto (1,1,1) na direção e sentido à origem.
b) Determine a direção e o sentido em que a temperatura cresce mais rapidamente a partir do ponto (1,1,1).
c) Determine a taxa de variação da temperatura no ponto (1,1,1), na direção e no sentido obtido no item b.

Bom, só consegui fazer a letra a. Calculei o vetor gradiente e multipliquei pelo ponto dado.
Mas não estou conseguindo fazer os outros itens.
Poderiam me ajudar?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Taxa de variação

Mensagempor MarceloFantini » Qui Out 18, 2012 21:22

Para calcular a taxa de variação você calcula a derivada direcional no vetor dado. A direção e sentido que a taxa de variação crescerá mais rapidamente será dada pelo gradiente da função, enquanto que o valor será o módulo do gradiente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Taxa de variação

Mensagempor manuela » Sex Out 19, 2012 16:51

Para calcular a taxa de variação, calculei o vetor gradiente de T no ponto dado: (1,1,1). Mas como calculo o vetor u para poder multiplicar o vetor gradiente achando a taxa de variação?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Taxa de variação

Mensagempor MarceloFantini » Sex Out 19, 2012 22:02

Seja \vec{u} um vetor unitário. Então pela definição de taxa de variação (ou derivada direcional) temos que

D_u T(x_0,y_0,z_0) = | \nabla T(x_0,y_0,z_0) | | \vec{u} | \cos \theta = | \nabla T(x_0,y_0,z_0) | \cos \theta.

Esta direção será máxima se e somente se esta expressão será máxima, que ocorre em \theta = 0, pois \cos \theta = 1. Portanto a taxa de variação na direção máxima faz ângulo zero com o vetor gradiente, ou seja, é o próprio vetor gradiente, e seu valor é | \nabla T(x_0,y_0,z_0) |.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}