• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Triângulo Isósceles inscrito na circunferência]

[Triângulo Isósceles inscrito na circunferência]

Mensagempor Gustavo Gomes » Dom Out 14, 2012 23:22

Pessoal.

Estou com dúvidas nessa questão:

'Na figura tem-se um triângulo isósceles inscrito num círculo de raio 3 metros. Se x representa a medida, em metros, da altura do triângulo com relação à sua base, qual a área desse triângulo (em função de x), em metros quadrados?'

a.png


A resposta é x.\sqrt[]{x(6-x)}.

Tentei pensar nos triângulos retângulos que a altura delimita, porém não consegui estabelecer nenhum vínculo entre estes e o raio do círculo em questão.

Aguardo... Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Triângulo Isósceles inscrito na circunferência]

Mensagempor MarceloFantini » Seg Out 15, 2012 01:03

Trace o raio da circunferência da origem até os pontos A e B. Você terá um novo triângulo ABH com altura x-r, hipotenusa r e outro cateto b, que é metade da base. Aplicando pitágoras, você tem (x-3)^2 +b^2 = 9^2 e x^2 -6x +9 +b^2 = 9, segue que b^2 = 6x-x^2 e b= \sqrt{x^2 -6x} = \sqrt{x(6-x)}.

Logo, a área do triângulo é A = \frac{1}{2} \text{ base} \cdot \text{altura} = \frac{1}{2} \cdot 2 \cdot b \cdot x = x \sqrt{x(6-x)}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Triângulo Isósceles inscrito na circunferência]

Mensagempor Gustavo Gomes » Seg Out 15, 2012 23:27

Obrigado, Marcelo.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.