• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Série Harmônica/hiperharmônica

Série Harmônica/hiperharmônica

Mensagempor Aprendiz2012 » Dom Out 14, 2012 17:39

Verificar se a Série é Harmonica, hiper-harmonica, convergente ou divergente:
\sum_{n=1}^{+\infty}{\left(\sqrt[6]{{n}^{3}} \right)}^{-1}




fiz:
p=3/6-1 = -1/3 e como p<1 então é HH Divergente.. não sei se está certo ou se precisa demonstrar mais alguma coisa..
Aprendiz2012
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sáb Ago 11, 2012 18:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em química
Andamento: formado

Re: Série Harmônica/hiperharmônica

Mensagempor MarceloFantini » Dom Out 14, 2012 18:24

Temos ( \sqrt[6]{n^3} )^{-1} = ( n^{\frac{3}{6}} )^{-1} = ( n^{\frac{1}{2}} )^{-1} = n^{\frac{-1}{2}} = \frac{1}{\sqrt{n}}, logo \sum_{n=1}^{\infty} ( \sqrt[6]{n^3} )^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}, que é uma série harmônica com p \leq 1, portanto divergente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Série Harmônica/hiperharmônica

Mensagempor Aprendiz2012 » Dom Out 14, 2012 23:29

Muito obrigado, mas no caso.. é uma série Hiper-Harmônica não é? p<1...
Aprendiz2012
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sáb Ago 11, 2012 18:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em química
Andamento: formado

Re: Série Harmônica/hiperharmônica

Mensagempor MarceloFantini » Dom Out 14, 2012 23:33

Isto é apenas um nome para uma generalização do expoente. Não conhecia.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}