por Aprendiz2012 » Dom Out 14, 2012 17:39
Verificar se a Série é Harmonica, hiper-harmonica, convergente ou divergente:
![\sum_{n=1}^{+\infty}{\left(\sqrt[6]{{n}^{3}} \right)}^{-1} \sum_{n=1}^{+\infty}{\left(\sqrt[6]{{n}^{3}} \right)}^{-1}](/latexrender/pictures/7a554be15843d11f1192376c40828615.png)
fiz:
p=3/6-1 = -1/3 e como p<1 então é HH Divergente.. não sei se está certo ou se precisa demonstrar mais alguma coisa..
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
por MarceloFantini » Dom Out 14, 2012 18:24
Temos
![( \sqrt[6]{n^3} )^{-1} = ( n^{\frac{3}{6}} )^{-1} = ( n^{\frac{1}{2}} )^{-1} = n^{\frac{-1}{2}} = \frac{1}{\sqrt{n}} ( \sqrt[6]{n^3} )^{-1} = ( n^{\frac{3}{6}} )^{-1} = ( n^{\frac{1}{2}} )^{-1} = n^{\frac{-1}{2}} = \frac{1}{\sqrt{n}}](/latexrender/pictures/80de5a95ae36d6f461b77de69438f338.png)
, logo
![\sum_{n=1}^{\infty} ( \sqrt[6]{n^3} )^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} \sum_{n=1}^{\infty} ( \sqrt[6]{n^3} )^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}](/latexrender/pictures/883149d8a4cc6dd707b37f2e7e4868fb.png)
, que é uma série harmônica com

, portanto divergente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Aprendiz2012 » Dom Out 14, 2012 23:29
Muito obrigado, mas no caso.. é uma série Hiper-Harmônica não é? p<1...
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
por MarceloFantini » Dom Out 14, 2012 23:33
Isto é apenas um nome para uma generalização do expoente. Não conhecia.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Série] Calcular valor de série tendo outra como referência
por robmenas » Dom Abr 07, 2019 14:35
- 0 Respostas
- 8534 Exibições
- Última mensagem por robmenas

Dom Abr 07, 2019 14:35
Sequências
-
- [série de Euler / problema da Basiléia] Série de Fourier
por Burnys » Qua Jul 16, 2008 14:34
- 4 Respostas
- 8876 Exibições
- Última mensagem por admin

Qui Jul 17, 2008 00:33
Sequências
-
- Série
por jccp » Seg Dez 16, 2013 01:44
- 3 Respostas
- 2530 Exibições
- Última mensagem por Russman

Seg Dez 16, 2013 20:19
Cálculo: Limites, Derivadas e Integrais
-
- Série
por Janoca » Qua Jul 23, 2014 13:41
- 1 Respostas
- 3069 Exibições
- Última mensagem por Russman

Qua Jul 23, 2014 20:45
Sequências
-
- Duvida da 4 serie...rs
por EdegarRodrigues » Sex Mar 05, 2010 23:16
- 1 Respostas
- 2371 Exibições
- Última mensagem por Cleyson007

Sáb Mar 06, 2010 12:19
Problemas do Cotidiano
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.