• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação de planos] Dùvida exercício 8

[Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 21:20

Estou com mais uma dúvida, só que agora no seguinte exercício:

Deduza uma equação do plano definido pelo eixo z e pelo ponto P(4,4,1).
Gabarito: x-y=0


Resolvi da seguinte forma:
Por o plano estar definido pelo eixo z, imaginei que o vetor v=(0,0,1) fosse pertencente ao plano.
Como o vetor normal do plano é perpendicular a este vetor v, sei que n.v=0.

Então

n.v=0

(a,b,c).(0,0,1)=0

c=0

Então achei o vetor normal ao plano n=(0,0,1)

Achando o valor de d:

1(1)+d=0

d=-1

Colocando o vetor normal e d na equação:

z-1=0

z=1

Como podem ver o meu resultado deu diferente do gabarito...
Minha resolução está certa?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 21:28

o vetor normal ao plano não é (0,0,1)
é (a,b,c) como voce achou que c=0
então o vetor normal é (a,b,0)

como o plano é definido pelo eixo z então qualquer ponto do eixo z pertence ao plano
por isso pegue algum destes pontos e diga que este ponto é C (sugiro o ponto (0,0,0) para facilitar nos calculos), encontre o vetor PC, sendo que o produto vetorial

\overrightarrow{PC}\times\overrightarrow{v}

dara o vetor normal ao plano, com isso voce determina a equação do plano.
Editado pela última vez por young_jedi em Sáb Out 13, 2012 22:33, em um total de 2 vezes.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MarceloFantini » Sáb Out 13, 2012 21:47

Jedi, a notação usual de produto vetorial é \vec{u} \times \vec{v} ou \vec{u} \wedge \vec{v}. A notação que você usou é a de produto tensorial.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 22:00

Pelo que eu entendi... quando o plano for paralelo ao eixo z, poderemos utilizar o vetor v=(0,0,1).
E quando um plano for definido pelo eixo z, poderemos utilizar o vetor v=(1,1,0)
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 22:04

tanto quando o plano for paralelo quando o vetor for definido o vetor normal ao plano é do tipo (a,b,0)
e nos dois casos nos podemos utilizar o vetor (0,0,1) para encontrar o vetor normal, so que quando o plano é definido pelo eixo z os pontos que estão sobre o eixo z podem ser utilizados (0,0,z) para encontrar outro vetor em um plano paralelo não, pois estes pontos não pertencem ao plano
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 22:14

young_jedi escreveu:o vetor normal ao plano não é (0,0,1)
é (a,b,c) como voce achou que c=0
então o vetor normal é (a,b,0)

como o plano é definido pelo eixo z então qualquer ponto do eixo z pertence ao plano
por isso pegue algum destes pontos e diga que este ponto é C (sugiro o ponto (0,0,0) para facilitar nos calculos), encontre o vetor PC, sendo que o produto vetorial

\overrightarrow{PC}\times\overrightarrow{PC}

dara o vetor normal ao plano, com isso voce determina a equação do plano.


Então eu só preciso pegar um ponto, por exemplo, C(0,0,1) do eixo z, fazer o vetor CP ou PC e fazer produto vetorial CP x CP ou PC x PC? Não sabia q dava pra fazer produto vetorial do mesmo vetor e achar um vetor perpendicular a ele... eu achava que tinha que ter 2 vetores diferentes coplanares.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 22:31

Na verdade voce precisa pegar dois pontos do eixo z
por esemplo C(0,0,1) e O(0,0,0) e ai fazer o produto vetorial PO x CO para encontrar o vetor normal eu digitei errado anteriormente vou corrigir, desculpa ai.O que voce disse esta correto precisa ser dois vetores coplanares
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 22:45

O que me anda confundindo muito são os seguintes exercícios:

Escreva uma equação do plano paralelo ao eixo z e que contém os pontos (2,0,0) e (0,3,2). Gabarito:3x+2y=6

Escreva uma equação do plano paralelo ao eixo z que contém o ponto (1,1,1). Gabarito: z=1

Como pode ver, nos dois exercícios o plano é paralelo ao eixo z e olha como as equações no gabarito são totalmente diferentes! :x
E o resultados do gabarito estão certos, pois confirmei com uma colega.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 23:23

o que acontece é que podem ter infinitos planos paralelos ao exio z, a unica coisa que eles tem em comum é que o vetor normal deles é ortogonal ao eixo z.
no primeiro caso por exemplo voce pode pegar os pontos A(2,0,0) e B(0,3,2) encontra vetor AB e fazer o produto vetorial com o vetor (0,0,1) ai voce encontra o vetor normal ao plano.

A segundo caso acho estranho o resultado ter dado z=1 pois este plano é ortogonal ao eixo z e não paralelo, a resposta poderia ser x=1 ou então y=1 este dois planos são soluções para a questão mais o plano z=1 não, sugiro que voce verifique esta questão com o professor ou então de alguma fonte onde ela foi retirada.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MarceloFantini » Sáb Out 13, 2012 23:45

MrJuniorFerr escreveu:Escreva uma equação do plano paralelo ao eixo z que contém o ponto (1,1,1). Gabarito: z=1

Este plano não é paralelo ao eixo z, e sim ortogonal. Ele é paralelo ao plano xy, ou paralelo aos eixos x e y simultaneamente. Essa pergunta contém uma contradição: não é possível ser paralelo ao eixo se cortá-lo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 23:54

Mandei um e-mail pra minha professora a respeito desse exercício. só me resta aguardar...
Irei dormir e 5:15h da manhã estarei de volta para a luta. haha
A minha lista têm 31 exercícios, eu já a terminei. Mas como ela deve também ser entregue, estou juntamente refazendo-a e passando a limpo. Estou com dúvidas nesses exercícios pq vc jedi, tinha me ensinado a fazer pelo método divindindo a equação geral do plano por a, etc. Mas, quero dominar a forma convencional para resolve-los.
Obrigado pela grande ajuda Marcelo e Jedi. Eu jamais teria terminado essa lista sem a ajuda de vocês, muitas dúvidas ficariam para trás. :-D
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?