• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor anneliesero » Sex Out 12, 2012 15:46

Olá, pessoal podem me ajudar nesse exercício?

03. (UNIV. CATÓLICA DE GOIÁS) Uma matriz quadrada A é dita simétrica se A = AT e é dita anti-simétrica se AT = -A, onde AT é a matriz transposta de A. Sendo A uma matriz quadrada, classifique em verdadeira ou falsa as duas afirmações:



(01) A + AT é uma matriz simétrica

(02) A - AT é uma matriz anti-simétrica



RESOLUÇÃO:
(01) verdadeira

(02) verdadeira


Poderiam exemplificar com números?
Obrigada.
:)
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matrizes

Mensagempor MarceloFantini » Sex Out 12, 2012 20:28

Você só precisa lembrar das propriedades que (A^t)^t = A e que transposição é linear. Para mostrar que A + A^t é simétrica, basta mostrar que (A + A^t)^t = A + A^t, mas (A +A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t. Use o mesmo procedimento para mostrar que A - A^t é anti-simétrica.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor anneliesero » Dom Out 14, 2012 13:04

Então fica assim:



Mas, não tem outro jeito de fazer não?
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matrizes

Mensagempor MarceloFantini » Dom Out 14, 2012 14:35

Você deve mostrar que A - A^t é anti-simétrica, você não pode afirmar isso até que prove. Portanto suas duas primeiras linhas de resolução já garantem o anulamento da questão.

Além disso, você errou no final do desenvolvimento, observe:

(A-A^t)^t = A^t - (A^t)^t = A^t - A = - (A - A^t).

Agora sim ela atende a definição de anti-simétrica.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matrizes

Mensagempor anneliesero » Dom Out 14, 2012 17:39

Mas, como ficou entre parenteses e com sinal negativo? Se antes não estava.

(A-A^t)^t = A^t - (A^t)^t = A^t - A = - (A - A^t).
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matrizes

Mensagempor MarceloFantini » Dom Out 14, 2012 18:16

Você tem que perceber que a-b = -(b-a). Apesar de serem matrizes, satisfazem as mesmas regras da soma de números: note que 2-1 = -(1-2).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}