• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Ângulo - reta e plano] Dúvida exercício

[Ângulo - reta e plano] Dúvida exercício

Mensagempor MrJuniorFerr » Sex Out 12, 2012 11:51

Tem um exercício aqui que estou com dúvida:

Obtenha a medida angular em radianos entre a reta r e o plano \pi

r: y-z=0
e
\pi: z=0

Sabe-se que para obter o ângulo de uma reta e um plano, deve-se utilizar esta fórmula:
sen \theta = \frac{\left|\overrightarrow{v}.\overrightarrow{n}\right|}{\left|\left| \overrightarrow{v}\left|\left|\right| \right|\overrightarrow{n} \right| \right|} \right|

O vetor diretor \overrightarrow{v} da reta é (0,1,-1) e o vetor normal \overrightarrow{n} do plano é (0,0,1).
Apliquei na fórmula e cheguei que \theta=sen^-^1 \left(\frac{\sqrt[]{2}}{2} \right)
Se eu fizesse a continha, daria 45º. Mas, o exercício quer em rad. Como eu faço isso?

Editando:

Ops, consegui fazer por regra de 3...

360 graus - 2\pi rad
45 graus - x

\frac{90\pi}{360} = x

\frac{\pi}{4} rad = x
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Ângulo - reta e plano] Dúvida exercício

Mensagempor MarceloFantini » Sex Out 12, 2012 12:44

Uma observação: se você está usando o produto escalar (ou produto interno), então o resultado é o cosseno do ãngulo, não o seno.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Ângulo - reta e plano] Dúvida exercício

Mensagempor MrJuniorFerr » Sex Out 12, 2012 13:13

MarceloFantini escreveu:Uma observação: se você está usando o produto escalar (ou produto interno), então o resultado é o cosseno do ãngulo, não o seno.


É nada Marcelo, eu também imaginava que fosse assim devido as fórmulas do produto escalar e vetorial, pois o do produto escalar contém o cosseno e a do vetorial o seno. Mas de acordo com o livro Geometria Analítica - Alfredo Steinbruch e com o gabarito da minha lista de exercícios, é da seguinte forma:
Quando queremos o ângulo de dois planos, devemos usar quase essa mesma fórmula que postei, só trocando o vetor diretor \overrightarrow{v} pelo vetor normal \overrightarrow{n} do outro plano e trocando o seno por cosseno e quando queremos o ângulo de uma reta e um plano, devemos essa fórmula que postei com o seno.
Lembrando que para os dois tipos de exercícios, se usam o produto escalar na fórmula. Realmente eu também acho estranho.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Ângulo - reta e plano] Dúvida exercício

Mensagempor MarceloFantini » Sex Out 12, 2012 13:38

Não faz sentido. Quando queremos o ângulo entre dois planos, apenas fazemos o produto escalar entre os vetores normais aos planos, logo \theta = \arccos \left( \frac{| \vec{n_1} \cdot \vec{n_2} |}{| \vec{n_1}| \cdot |\vec{n_2}|} \right).

Se a reta e o vetor normal ao plano forem ortogonais o produto escalar entre eles será zero, que por sua fórmula indicará que o ângulo é zero entre eles, uma contradição. Você poderia citar o trecho em que o livro explica isto?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Ângulo - reta e plano] Dúvida exercício

Mensagempor MrJuniorFerr » Sex Out 12, 2012 13:55

Marcelo, to de saída agora.. vou até a universidade, pois combinei com a professora para tirar algumas dúvidas quanto a lista, pois a minha prova é na próxima terça. Ao voltar, coloco aqui todos os detalhes.
Até mais

Editando: No máximo 16:30 estou de volta.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Ângulo - reta e plano] Dúvida exercício

Mensagempor MrJuniorFerr » Sex Out 12, 2012 18:53

Desculpe a demora Marcelo, houve um imprevisto.

Tudo o que o livro diz sobre ângulo de retas e planos é:

Seja uma reta r com direção do vetor \overrightarrow{v} e um plano \pi , sendo \overrightarrow{n} um vetor normal a \pi.
O ângulo \phi da reta r com o plano \pi é o complemento do ângulo \theta que a reta r forma com uma reta normal ao plano.
Tendo em vista que \theta + \phi = \frac{\pi}{2} e, portanto, cos\theta = sen\phi, vem, de acordo com a fórmula cos\theta= \frac{\overrightarrow{v}.\overrightarrow{v}}{\left|\overrightarrow{u}\right|.\left|\overrightarrow{v}\right|}

sen\phi= \frac{\left|\overrightarrow{v}.\overrightarrow{n}\right|}{\left|\overrightarrow{v}\right|\left|\overrightarrow{n}\right|},0\leq\phi\leq\frac{\pi}{2}
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Ângulo - reta e plano] Dúvida exercício

Mensagempor MarceloFantini » Sex Out 12, 2012 20:18

Agora tudo faz sentido.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.