• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Conceito de Existência

[Limite] Conceito de Existência

Mensagempor eli83 » Qua Out 10, 2012 10:33

Aplicando o conceito de exitência de limite, verifique se existe o limite da seguinte função quando x tende para dois:

f(x) = {\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}


Fiz utilizando Continuidade.
Se f é contínua em a, então as três condições deverão ser satisfeitas.

existe f(a)

existe \lim_{x\to a}

\lim_{x\to a}f(x) = f(a)


\lim_{x\to a}f(x) = \lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} = {\displaystyle\biggl[24\biggr]^{5}} (Posso aplicar a definição direta de limite neste caso, pois não terei problemas com o denominador.)

f(2) = {\displaystyle\biggl[24\biggr]^{5}}

E como temos:

\lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} = f(2)

Então existe

\lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}

Tenho uma dúvida em relação ao enunciado ele diz aplicando o conceito de existência de limite e eu solucionei aplicando o conceito de continuidade, isto estaria correto.
E também gostaria que verificassem a minha resolução.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor young_jedi » Qua Out 10, 2012 19:27

Neste caso voce deve verificar se os limites laterais existem e se são iguais, sendo assim o limite existe
Como o exercicio so pede para verificar a existencia do limite não precisa verificar se a função é continua
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor MarceloFantini » Qua Out 10, 2012 21:06

Um outro toque, nunca escreva \lim_{x \to a}, e sim \lim_{x \to a} f(x). Só existe limite de funções.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor eli83 » Qui Out 11, 2012 09:16

E nesse caso como faço. Atribuo valores aleatórios a esquerda e a direita de 2.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor young_jedi » Qui Out 11, 2012 17:25

Sim voce atribui valores proximos a 2 pela direita e pela esquerda, veja se eles convergem para um mesmo valor, analisando a questão é possivel ver que sim e portanto o limite existe.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.