• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômios - Raízes complexas

Polinômios - Raízes complexas

Mensagempor Malorientado » Dom Out 07, 2012 15:45

Determinar o conjunto solução de x³-ix²+4x-4i=0, i é raíz.
Bom se i é raíz, -i também é, certo? Multiplicando (x+i)(x-i) eu tenho dois fatores da equação, que posso usar para descobrir o outro fator, que contém a outra raíz(3° grau, 3 raízes). Basta que eu divida a equação pelos fatores e por q(x) encontrar a que falta. Está correto esse modo de resolução? E no caso de uma equação de grau 5, se for me dado duas ráizes Reais(tipo 2 e 1), mesmo que eu divida, ainda terei uma equação de grau 3 em q(x), que não aceita Bháskara. Nesses casos o único modo mais simples de se resolver é criar um fator com incógnitas, multiplicar pelos fatores com raízes dadas e depois igualar? Tipo: 1°coeficiente(x-1)(x-2)(x-a)(x-b)(x-c).
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Polinômios - Raízes complexas

Mensagempor MarceloFantini » Dom Out 07, 2012 16:43

Sim, está correto seu método de resolução. No caso de um polinômio do quinto grau, se após reduzir os fatores for de terceiro grau, você sabe que existe ainda pelo menos uma raíz real e tenta encontrá-la. É muito difícil trabalhar com polinômios de grau maior que quatro pois não existe fórmula usando apenas operações comuns e radiciação. O que acontece na prática é o uso de cálculos numéricos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Polinômios - Raízes complexas

Mensagempor Malorientado » Dom Out 07, 2012 16:49

Então teria mesmo que efetuar 1°coeficiente(x-1)(x-2)(x-a)(x-b)(x-c) para depois comparar. Será que existe a possibilidade de encontrar uma questão assim em um concurso com nível de vestibular?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Polinômios - Raízes complexas

Mensagempor MarceloFantini » Dom Out 07, 2012 20:21

Podem aparecer questões com polinômios de graus maiores, mas quase sempre as raízes são muito simples, como inteiros. No caso de haver complexas, você reduz em duas quadráticas e tudo sai normalmente. Nem sempre é necessário fatorar e igualar coeficientes, mesmo porque este procedimento só é útil quando falta apenas um. Se houver mais coeficientes desconhecidos, pode não ser possível determiná-los unicamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.