• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL INDEFINIDA] Duvida de integração

[INTEGRAL INDEFINIDA] Duvida de integração

Mensagempor fabriel » Qua Out 03, 2012 16:20

Bom amigos, surgiu ma dúvida aqui quando estava integrando essa integral:
\int_{}^{}\frac{dx}{x^2+2x+5}
E eu estava reescrevendo na forma:
\int_{}^{} {x}^{-2}+\frac{{x}^{-1}}{2}+\frac{1}{5}dx
Mas não tenho certeza se isso esta certo, se eu posso escreve-la assim, pois:
\int_{}^{}\frac{{x}^{-1}}{2}dx
Vai dar uma indeterminação do tipo 1/0, então pesso ajuda nisso ai...É o caminho certo, ou devo usar outros métodos, se devo usar então de que jeito??
obrigado!!
*-)
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL INDEFINIDA] Duvida de integração

Mensagempor young_jedi » Qua Out 03, 2012 16:34

voce não pode escrever da forma como colocou:

\frac{1}{x^2+2x+5}=(x^2+2x+5)^{-1}

isto é diferente do que voce colocou, voce não pode distribuir os expoentes na soma de termos

uma forma melhor de resolver seria

\int\frac{dx}{x^2+2x+1+4}=\int\frac{dx}{(x+1)^2+4}

subsitituindo

x+1=2u

dx=2du

\int\frac{2du}{4u^2+4}

\frac{1}{2}\int\frac{du}{u^2+1}

para esta ultima integral existe na tabela de integrais e esta relacionado ao arctang
é so pesquisar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [INTEGRAL INDEFINIDA] Duvida de integração

Mensagempor MarceloFantini » Qua Out 03, 2012 16:34

Você está cometendo um erro grave, note que \frac{1}{x^2 +2x+5} \neq x^{-2} + \frac{1}{2x} + \frac{1}{5}. Tome x=0 para ver, a primeira expressão resulta em \frac{1}{5} enquanto que a outra nem está definida.

Assim como no outro tópico, escreva x^2 +2x +5 = x^2 +2x +1 +4 = (x+1)^2 +4 = 4 \left( \frac{(x+1)^2}{4} +1 \right) e faça a substituição u = \frac{x+1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [INTEGRAL INDEFINIDA] Duvida de integração

Mensagempor fabriel » Qua Out 03, 2012 17:39

Valeu muito obrigado, por mostrar o caminho.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}