• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio função contínua

Domínio função contínua

Mensagempor emanes » Seg Out 01, 2012 09:19

Bom dia,
Não estou conseguindo resolver este exercício no qual se pede a determinação do domínio e a verificação que a função é contínua:

f(x)=\frac{{x}^{3}-3{x}^{2}}{{x}^{4}-8{x}^{3}+12{x}^{2}}

Obrigado.
emanes
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Ago 17, 2012 09:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabil
Andamento: cursando

Re: Domínio função contínua

Mensagempor MarceloFantini » Seg Out 01, 2012 09:38

Descubra onde x^4 -8x^3 +12x^2 \neq 0, estes serão os pontos do domínio da função, onde ela é contínua.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Domínio função contínua

Mensagempor emanes » Seg Out 01, 2012 09:57

A fração do exercício foi simplificada para:

f(x)=\frac{{x}^{2}-1}{{x}^{2}-4}

Alguém poderia explicar como foi feita essa simplificação?

Obrigado
emanes
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Ago 17, 2012 09:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabil
Andamento: cursando

Re: Domínio função contínua

Mensagempor MarceloFantini » Seg Out 01, 2012 10:04

Essa nova fração não tem qualquer relação com a outra. Verifique novamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}