• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômios" Multiplicidade de raizes de polinômio

Polinômios" Multiplicidade de raizes de polinômio

Mensagempor Rose » Sex Set 21, 2012 18:42

Boa tarde!!

Estou com duvida nesta questão: Verifique se o polinômio p(x)= 2x^5 + 23x^4 + 96x^3 + 162 x^2 + 54x - 81 possui alguma raiz real de multiplicidade 4, e caso possua, encontre-a.

Resolução

Não sei se entendi certo o problema mas dividi o p(x)= 2x^5 + 23x^4 + 96x^3 + 162 x^2 + 54x - 81 por ( x-4) e obtive como resultado : q(x)= 2x^4 + 31x^3 +220x^2+ 1042 x + 4222 e r (x) =16880...Com isso conclui que X- 4 não é raiz....Mas como encontrar a riz certa!! Podes me ajudar!!
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

Re: Polinômios" Multiplicidade de raizes de polinômio

Mensagempor young_jedi » Sex Set 21, 2012 19:59

um polinomio que possui uma raiz de multiplicidade 4 é um polinomio do tipo

P.(x-a)^2.(x-b)

sendo que a é sua raiz de multiplicidade quatro e b é uma raiz de multiplicidade 1
sendo estas as duas raizes do polinomio

pelas relações de Girard

4a+b&=&\frac{-23}{2}

6a^2+4ab&=&\frac{96}{2}

6a^2.b+4a^3&=&\frac{-162}{2}

4a^3.b+a^4&=&\frac{54}{2}

a^4.b&=&\frac{81}{2}

para que a seja raiz do polinomio e tenha multiplicidade 4 todas as equaçãoes devem ser satisfeitas
assim isolando b na primeira equação e substituindo na segunda temos

6a^2+4a(-4a-\frac{23}{2}&=&\frac{96}{2})

-16a^2+6a^2-46a-48&=&0

10a^2+46a+48&=&0

5a^2+23a^2+24&=&0

a&=&\frac{-23\pm \sqrt{23^2-4.5.24}}{2.5}

a&=&\frac{-23\pm \sqrt{529-480}}{10}

a&=&\frac{-23\pm \sqrt{49}}{10}

a&=&\frac{-23\pm7}{10}

a_{1}&=&-3

a_{2}&=&-\frac{2}{3}

para a=-3 temos

b&=&-\frac{23}{2}-4(-3)

b&=&\frac{1}{2}

substituindo nas demais equação vemos que a=-3 e b=1/2 satisfazem todas portanto -3 é raiz de multiplicidade 4
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Polinômios" Multiplicidade de raizes de polinômio

Mensagempor MarceloFantini » Sex Set 21, 2012 23:56

Jedi, por que escreveu (x-a)^2(x-b)? Uma raíz de multiplicidade quatro quer dizer que p(x) = (x-a)^4 (x-b), então estou perguntando por que da mudança de notação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Polinômios" Multiplicidade de raizes de polinômio

Mensagempor young_jedi » Sáb Set 22, 2012 10:08

Voce esta certo MarceloFantini, obrigado por conferir, foi apenas um descuido meu
o correto é isto mesmo que vc colocou.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?