• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Dúvida simplificação

[Derivadas] Dúvida simplificação

Mensagempor MrJuniorFerr » Qui Set 20, 2012 17:22

Supomos que eu tenha derivado algumas funções e dê isto: (6x^5+e^x).cos(3x^2+e^x)^2
Eu tentei decompor/distribuir esta expressão e ficou assim: cos(18x^7+6x^5.2e^x.3x^2+e^2x)­^3
Bom, o que eu fiz foi fazer a distributiva e somar os expoentes e somei inclusive os expoentes externos (não tenho certeza se é o certo). Ali no meio, tinha ficadoe^x+e^x, por isto, está 2e^x. Eu resolvi de maneira correta?

Obs: Esqueçam o A que está na 2ª expressão. Nem sei como foi parar ali...
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Derivadas] Dúvida simplificação

Mensagempor LuizAquino » Qui Set 20, 2012 18:48

MrJuniorFerr escreveu:Supomos que eu tenha derivado algumas funções e dê isto: (6x^5+e^x).cos(3x^2+e^x)^2
Eu tentei decompor/distribuir esta expressão e ficou assim: cos(18x^7+6x^5.2e^x.3x^2+e^2x)­^3
Bom, o que eu fiz foi fazer a distributiva e somar os expoentes e somei inclusive os expoentes externos (não tenho certeza se é o certo). Ali no meio, tinha ficadoe^x+e^x, por isto, está 2e^x. Eu resolvi de maneira correta?


Basicamente, você está pensando que algo do tipo k\cos \alpha é igual a \cos k\alpha. Mas esse pensamento está errado. O valor multiplicando o cosseno não pode "entrar" nele e multiplicar seu argumento.

Por exemplo, note que 2\cos \pi é diferente de \cos 2\pi .

Desse modo, o resultado final dessa derivada que você calculou seria simplesmente \left(6x^5+e^x\right)\cos\left(3x^2+e^x\right)^2 .

MrJuniorFerr escreveu:Obs: Esqueçam o A que está na 2ª expressão. Nem sei como foi parar ali...


Tipicamente esse é um erro que acontece quando você digita dentro do ambiente LaTeX usando algum tecla especial do teclado, como "²" e "³" (aquelas teclas que colocam a potência 2 ou 3). Mas também pode ser devido algum problema de configuração do seu teclado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas] Dúvida simplificação

Mensagempor MrJuniorFerr » Qui Set 20, 2012 23:35

Entendo Prof. Luiz. Mas eliminando o cosseno, a minha distributiva estaria correta?
Obrigado.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Derivadas] Dúvida simplificação

Mensagempor LuizAquino » Sex Set 21, 2012 16:58

MrJuniorFerr escreveu:Entendo Prof. Luiz. Mas eliminando o cosseno, a minha distributiva estaria correta?
Obrigado.


Não estaria. O correto seria:

\left(6x^5+e^x\right)\left(3x^2+e^x\right)^2 = \left(6x^5+e^x\right)\left(9x^4 + 6x^2e^x + e^{2x}\right)

= 54x^9 + 36x^7e^x + 6x^5e^{2x} + 9x^4e^x + 6x^2e^{2x} + e^{3x}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}