Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por DanielFerreira » Dom Set 16, 2012 20:59
(UFMG) Considerem-se todas as divisões de números inteiros positivos por 17, cujo resto é igual ao quadrado do quociente. A soma dos quocientes dessas divisões é:
a) 10
b) 17
c) 17²
d) 1 + 2 + ... + 17
e) 1² + 2² + ... + 17²
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Renato_RJ » Dom Set 16, 2012 21:05
Opa, boa noite !!!
Os restos da divisão por 17 vão de 0 a 16, se o resto é o quadrado do quociente, então os possíveis restos seriam: 1, 4, 9 e 16 para os quocientes 1, 2, 3 e 4... Logo a soma dos quocientes será 1 + 2 + 3 + 4 = 10, letra a....
Está certo ???
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por DanielFerreira » Dom Set 16, 2012 21:12
Sim!
Boa resolução.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Desafios Médios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema inteiros positivos
por Jovani Souza » Sex Jun 07, 2013 18:05
- 0 Respostas
- 1177 Exibições
- Última mensagem por Jovani Souza

Sex Jun 07, 2013 18:05
Sequências
-
- Números positivos
por plugpc » Qua Mai 20, 2009 19:31
- 3 Respostas
- 2178 Exibições
- Última mensagem por Molina

Qua Mai 20, 2009 22:39
Álgebra Elementar
-
- [Quantidade de divisores positivos]
por Gustavo Gomes » Seg Dez 17, 2012 22:44
- 2 Respostas
- 1839 Exibições
- Última mensagem por Gustavo Gomes

Ter Dez 18, 2012 21:32
Teoria dos Números
-
- Se os números reais positivos x e y forem tais que:
por andersontricordiano » Seg Abr 11, 2011 15:25
- 7 Respostas
- 5478 Exibições
- Última mensagem por FilipeCaceres

Ter Abr 12, 2011 12:31
Logaritmos
-
- Inteiros
por Gaussiano » Sex Dez 30, 2011 12:14
- 0 Respostas
- 909 Exibições
- Última mensagem por Gaussiano

Sex Dez 30, 2011 12:14
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.