• Anúncio Global
    Respostas
    Exibições
    Última mensagem

circulo e triangulo

circulo e triangulo

Mensagempor heldersmd » Sáb Set 15, 2012 17:06

Muito obrigado pela resposta anterior!!!!
Na questão:
Seja um triângulo BAC inscrito em uma semicircunferência de diâmetro BC. Uma reta perpendicular a BC, em um ponto D, corta a reta suporte do lado AB no ponto E, a reta suporte do lado AC no ponto F e a semicircunferência no ponto H. Calcule DH sabendo que DE = 3 cm e que DF = 4 cm.
Cheguei a tres triangulos semelhantes, utilizei o ponto FA vezes FC igual a FH vezes o prolongamento de D; tentei pela trigonometria, mas não consegui chegar a lugar algum...
Mais uma vez muito obrigado!!!!!!
heldersmd
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Set 14, 2012 16:07
Formação Escolar: GRADUAÇÃO
Área/Curso: vestibulando
Andamento: cursando

Re: circulo e triangulo

Mensagempor young_jedi » Sáb Set 15, 2012 21:07

analisando o desenho e chamando o raio da cricunferencia de r e a distancia que queremos encontrar de d

criculo.png
circulo
criculo.png (5.63 KiB) Exibido 1082 vezes


por semelhança de triangulo temos que

\frac{FD}{DC}&=&\frac{DB}{DE}

\frac{4}{2r-x}&=&\frac{x}{3}

2rx-x^2&=&12

mas temos por pitagoras que

d^2+(r-x)^2&=&r^2

d^2&=&r^2-r^2+2rx-x^2

d^2&=&2rx-x^2

substituindo

d^2&=&12
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.