• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções Não Bijetivas

Funções Não Bijetivas

Mensagempor Jhenrique » Sáb Set 15, 2012 13:31

Saudações caros estudantes!

Estive pensando... é verdade que para uma função possuir inversa, ela precisa ser bijetora, se não for, até podemos fazer manipulações com o domínio, contradomínio e imagem até que consigamos plotar a cara dela no gráfico de modo a não causar problemas. Enfim...

Notem o que eu fiz no GeoGebra...
asin.PNG


Suponhamos que a função f(x) e g(x) fossem únicas, ou pensando de outro modo, que a imagem e o contradomínio da função f(x) estejam definidos até 3?/2, assim sendo, então minha pergunta é a seguinte, porque esta função, não bijetora, não poderia ser plotada em função de x no intervalo [-1, 1]?

Não convém, eu sei! Porque para x = 1/2 tem-se y = ?/6 e 5?/6. Mas e se eu quiser plotar um gráfico com dois valores y satisfazendo uma função, e daí? Por que não?

Vlw,

José!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Funções Não Bijetivas

Mensagempor MarceloFantini » Sáb Set 15, 2012 14:16

Henrique, não compreendi muito bem sua dúvida. Lembre-se que pela definição de função cada elemento do domínio tem uma única imagem.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.