• Anúncio Global
    Respostas
    Exibições
    Última mensagem

medidas

medidas

Mensagempor ana celia » Qua Set 12, 2012 17:57

Galara, ajude-me !!!!
A figura em anexo compara as alturas , medidas em metros,de dois painéis decorativos triangulares fixados em um perede, que simulam árvores de Natal.Sabendo-se que a soma dos medidas das alturas dos dois panéis é igual a 4 m , e que em cada painel foram instaladas 200 lampadazinhas coloridas por metro quadrado, pode-se concluir que o número de lampadas instaladas no painel de maior alutra foi igual a
resposta 250,00
ana celia
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 11, 2012 10:08
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: medidas

Mensagempor Cleyson007 » Qua Set 12, 2012 18:29

Boa tarde Ana Celia!

Cadê a figura?

Aguardo retorno.

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: medidas

Mensagempor ana celia » Qua Set 12, 2012 18:39

Como enviar o arquivo , ele não aceita pdf
ana celia
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 11, 2012 10:08
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: medidas

Mensagempor Cleyson007 » Qua Set 12, 2012 21:28

Boa noite Ana Celia!

Vamos fazer de uma maneira fácil..

Com o arquivo aberto na tela do computador, print a tela (botão PrintScreen do teclado).

Abra o Paint e recorte a imagem que deseja salvando-a com o formato .jpeg porque é leve.

Daí clique em Adicionar um anexo. Fica aqui dentro do fórum, veja:

Imagem

Comente qualquer dúvida :y:

Obs.: Se você baixou o pdf de algum site é muito mais fácil me enviar o link que eu abro por aqui..

Abraço,
Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: medidas

Mensagempor ana celia » Qui Set 13, 2012 10:12

segue anexo
Anexos
metros.jpg
ana celia
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 11, 2012 10:08
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: medidas

Mensagempor Cleyson007 » Qui Set 13, 2012 10:47

Bom dia Ana!

Que bom que conseguiu inserir o anexo.. Agora posso lhe ajudar! Vamos lá?

Chame a altura do painel maior de h e do painél menor de h1. Logo, h1 + h = 4.

h1 = 4 - h

Observando a figura perceba que a escala h1 = (3/5) h

Fazendo a substituição, temos: 4 - h = (3/5) h --> h = 2,5m (altura do painél do maior)

Quantidade de lâmpadas = Área do painél x Número de lâmpadas/m²

Quantidade de lâmpadas = (1) (5/2) / 2 (200) --> (5/4)(200) = 250 lâmpadas

Comente qualquer dúvida :y:

Abraço,
Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?