• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos

Conjuntos

Mensagempor Felipe santos santos » Ter Set 04, 2012 08:26

Eu to com algumas duvidas que estão me impedindo continuar com a matéria , se alguém puder ajudar eu agradeço!! :

1 -como eu posso provar : Na U b = Na+Nb - Na inter b .
Eu já olhei a resolução deste exercício , porém ainda não consegui entender bem o que ele faz .Eu sei que essa fórmula é usada em muitos exercícios , porém como eu não não entendi eu não consigo aplica-la .

2-O que seria um conjunto complementar em U . Eu sei que complementar de ex : B em A seria A-b . mais e quando o conjunto é complementar do universo ? significa que eu devo exclui-lo .

3 - Aquele traço em cima do conjunto significa que ele é complementar de algo ... como saber de quem ele é complementar ex :
digamos que ` seja o traço em cima dos conjuntos então , `A-B ,`A-`b , de quem eles são complementares como distinguir , e quando o traço está em cima dos dois conjuntos .Mesma coisa aquele C na frente dos conjuntos , não o de sub-conjunto , mais aquele que fica dentro dos parenteses , o que ele significa quando esta com um único conjunto .

Bom é isso agradeço desde já .
Felipe santos santos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Set 04, 2012 08:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vest
Andamento: cursando

Re: Conjuntos

Mensagempor Joseaugusto » Ter Set 04, 2012 21:01

1a duvida:
Acontece o seguinte, quando se faz AUB, teoricamente seria só somar os elementos de A e B. Porém, isso só é valido quando são conjuntos disjuntos (sem elementos comuns). Quando a interseccão não é vazia, na soma os elementos comuns, ou seja, AinterB, seriam contados duas vezes. Por isso se subtrai AinterB
Não sei se ficou claro, então fiz um exemplo rapido:
Imagem
Na primeira imagem, temos os conjuntos A e B. Para fazer A+B, os elementos 3 e 7 apareceriam duas vezes (imagem 2). Mas na união de conjuntos, os elementos comuns são contados apenas uma vez, por isso subtraimos a intersecção (imagem 3), resultando em AUB (imagem 4)

2a duvida.
Pense no complementar assim:
Complementar de A em relação a B é tudo o que falta em A para que a se torne B, ou seja, B-A. Isso vale para quaisquer conjunto. Então, o complementar de A em relação a U, seria U-A
Imagem
A parte rosa é Acomplementar( {A}^{c})

3a duvida
Eu não entendi direito o que perguntou, vamos por partes.
Chamaremos Ac ou Bc os complementares de A e B respectivamente.
Quando não especifica (dizendo por exemplo AcB (a complementar em relação a B), voce considera complementar em relação ao U.
Nos casos que voce citou:
quando temos por exemplo, Ac - B
Imagem
Isso seria: Tudo o que falta para que A se torne o universo, menos o conjunto B
Ac - Bc
Imagem
Como A \subset B, temos que Ac seria todo o universo menos A, e Bc seria a parte verde (U-B). Dessa forma Ac-Bc seria a parte em rosa.


Espero ter ajudado.
Joseaugusto
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 06, 2012 11:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59