• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação geral do plano usando duas retas

Equação geral do plano usando duas retas

Mensagempor iarapassos » Sáb Set 01, 2012 19:12

Olá pessoal.

O exercício do qual tenho dúvida é:

Determine, se possível, uma equação geral do plano determinado pelas retas r e s, nos seguintes casos:

c)r: X=(1,2,3) + h(1,0,2);h\in\Re 


s: X=(0,3,1) + t(2,0,4);t\in\Re

Eu fiz as questões a e b e nelas foi possível achar o vetor normal do plano formado pelas retas, pois eles eram LI e portanto paralelos. O produto vetorial dos vetores diretores das retas resulta na normal do plano.
Mas na letra c, os vetores são LD, ou seja, eles são paralelos. Nesse caso, como achar a equação geral do plano?
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Equação geral do plano usando duas retas

Mensagempor LuizAquino » Sáb Set 01, 2012 22:54

iarapassos escreveu:O exercício do qual tenho dúvida é:

Determine, se possível, uma equação geral do plano determinado pelas retas r e s, nos seguintes casos:

c)r: X=(1,2,3) + h(1,0,2);h\in\Re 

s: X=(0,3,1) + t(2,0,4);t\in\Re

Eu fiz as questões a e b e nelas foi possível achar o vetor normal do plano formado pelas retas, pois eles eram LI e portanto paralelos. O produto vetorial dos vetores diretores das retas resulta na normal do plano.


Observação: o correto seria dizer "achar o vetor normal do plano formado pelos vetores diretores das retas, pois eles eram LI e portanto não paralelos".

iarapassos escreveu:Mas na letra c, os vetores são LD, ou seja, eles são paralelos. Nesse caso, como achar a equação geral do plano?


Simples: como essas retas são paralelas e não coincidentes (verifique), basta escolher um ponto P na reta r e um ponto Q na reta s. Um vetor normal ao plano será dado por \overrightarrow{PQ}\times(1,\,0,\,2) (ou ainda, por \overrightarrow{PQ}\times(2,\,0,\,4)).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação geral do plano usando duas retas

Mensagempor iarapassos » Dom Set 02, 2012 22:15

Verdade, acho que escrevei com pressa e acabei escrevendo errado. Se são LI, não são paralelos. E tbm mandei em falar "formado pelas retas" e não por seus vetores diretores. Valeu pela dica!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.