• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[função quadrática] UFF ESPECÍFICA

[função quadrática] UFF ESPECÍFICA

Mensagempor JKS » Sex Ago 24, 2012 13:34

Preciso de ajudaa, desde já agradeço .


(UFF) Considere a parábola y = {x}^{2}, a origem O do sistema de eixos coordenados e um ponto Q (m,{m}^{2}) pertence a parábola.

Determine:

a) as coordenadas do ponto R, interseção da mediatriz do segmento OQ com o eixo y

b)O ponto do qual se aproxima R quando Q, percorrendo a parábola, se aproxima da origem.

Resposta -> a)\left(0,\frac{{m}^{2}+1}{2} \right)

b) \left(0,\frac{1}{2}\right)
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [função quadrática] UFF ESPECÍFICA

Mensagempor fraol » Qui Ago 30, 2012 23:29

Boa noite,

Para o ponto M sendo o ponto médio de OQ temos M = ( \frac{m}{2}, \frac{m^2}{2} ).

A reta suporte de OQ tem coeficiente angular a = \frac{m^2}{m} \iff a = m , então o coeficiente angular da reta mediatriz que passa por M é a' = - \frac{1}{m} (pois a mediatriz é perpendicular a OK). Essa mediatriz tem como equação y' = a' \cdot x + y_R. Onde y_R é a ordenada do ponto de interseção da mediatriz com o eixo y. Como o ponto M pertence à mediatriz então:

\frac{m^2}{2} = - \frac{1}{m} \cdot \frac{m}{2} + y_R \iff y_R = \frac{m^2}{2} + \frac{1}{m} \cdot \frac{m}{2} \iff y_R = \frac{m^2}{2} + \frac{1}{2}.

Essa última expressão responde ao item a) da questão, uma vez que o x do ponto R é igual a 0.

Usando a mesma expressão, informalmente, podemos dizer que quando Q, percorrendo a parábola, se aproxima da origem o valor de m tende a zero e, no limite, teremos que y_R =  \frac{1}{2}. E isso responde ao item b), uma vez que ali, também, o x do ponto R é igual a 0.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.