• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teste da integral

Teste da integral

Mensagempor lucasguilherme2 » Qua Ago 29, 2012 23:23

Prezados, estou com dúvida no exercício abaixo. Se puderem me ajuda, serei muito grato. :)

Determinar a convergência ou divergência da seguinte série:

\sum_{k=1}^{\infty} \frac{3{k}^{2}}{{k}^{3}+ 16}
lucasguilherme2
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Mai 24, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais
Andamento: cursando

Re: Teste da integral

Mensagempor MarceloFantini » Qui Ago 30, 2012 06:22

Essa série será convergente se e somente se a integral \int_1^{\infty} \frac{3k^2}{k^3 +16} \, dk for finita. Fazendo u = k^3 +16 então \int_1^{\infty} \frac{3k^2}{k^3 +16} \, dk = \int_{17}^{\infty} \frac{du}{u} = \ln u \Bigg\vert_{17}^{\infty} = + \infty}, logo a série diverge.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Teste da integral

Mensagempor lucasguilherme2 » Qui Ago 30, 2012 12:31

Muito obrigado pela ajuda Marcelo. Não enxerguei a utilização do U e Du. Vou ficar mais atento :)
lucasguilherme2
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Mai 24, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.