• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Exponencial/Logarítmos] exercício ITA

[Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Ter Ago 28, 2012 16:27

Boa tarde. Sou novo no fórum. Não estou conseguindo achar o caminho para o exercício abaixo.
Obrigado

A soma de todos os valores de x que satisfazem à equação abaixo:

9^{x-1/2}- 4/3^{1-x}=-1

a) 0 b) 1 c) 2 d) 3 e) 4
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor e8group » Ter Ago 28, 2012 18:08

Boa tarde ,sua equação seria esta 9^{\frac{x-1}{2}} -\left( \frac{4}{3}\right )^{1-x} = -1 ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Ter Ago 28, 2012 23:54

...
Editado pela última vez por fabiomarine em Qua Ago 29, 2012 00:22, em um total de 1 vez.
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Qua Ago 29, 2012 00:17

santhiago escreveu:Boa tarde ,sua equação seria esta 9^{\frac{x-1}{2}} -\left( \frac{4}{3}\right )^{1-x} = -1 ??


Não Santhiago. A grafia é aquela mesma.

Anexei uma foto da página.
Anexos
IMG00039-20120828-2234.jpg
IMG00039-20120828-2234.jpg (6.36 KiB) Exibido 3806 vezes
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor e8group » Qua Ago 29, 2012 00:18

Boa noite . Sendo assim ,note que :


9^{x - 1/2}  - \frac{4}{3^{1-x}} = - 1


\frac{9^x}{3} - 4 \frac{3^x}{3} = -1



(3^x)^2 - 4(3^x) + 3 = 0


3^x = \frac{4 \pm \sqrt{16 - 12} } {2}  = \frac{4 \pm 2 }{2}

\implies  3^x = \begin{cases} 3 \\ 1  \end{cases}  \implies x = \begin{cases} 1 \\ 0  \end{cases} .



Logo a soma dos possíveis valores p/ x será 0+1 = 1.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Qua Ago 29, 2012 13:23

santhiago escreveu:Boa noite . Sendo assim ,note que :

9^{x - 1/2}  - \frac{4}{3^{1-x}} = - 1

\frac{9^x}{3} - 4 \frac{3^x}{3} = -1

(3^x)^2 - 4(3^x) + 3 = 0

3^x = \frac{4 \pm \sqrt{16 - 12} } {2}  = \frac{4 \pm 2 }{2}

\implies  3^x = \begin{cases} 3 \\ 1  \end{cases}  \implies x = \begin{cases} 1 \\ 0  \end{cases} .

Logo a soma dos possíveis valores p/ x será 0+1 = 1.


Não tinha pensado em enxergar a expressão como uma equação do 2º grau. Muito obrigado!
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?