• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria - plano e curva

Geometria - plano e curva

Mensagempor marinalcd » Seg Ago 20, 2012 21:04

Determine a curva de interseção entre o hiperbolóide x²+y²-z²=4, z>0 e o plano y+2z=5.
Não tô conseguindo fazer a interseção. Pois primeiro coloquei tudo num sistema, mas não deu certo.
É óbvio, pois um é plano e outro é hiperboloide. Mas não tô conseguindo de outra forma.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Geometria - plano e curva

Mensagempor Russman » Ter Ago 21, 2012 02:52

Você tem o seguinte sistema para resolver:

\left\{\begin{matrix}
x^2 + y^2 - z^2 = 4\\ 
y+2z=5
\end{matrix}\right.

sujeito a restrição z>0, isto é, o hiperbolóide "positivo".

Basta que você isole uma das incógnitas na equação do plano e aplique na eq. do hiperbolóide!
Segue que
\left\{\begin{matrix}
x^2 + y^2 - z^2 = 4\\ 
y+2z=5
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
x^2 + y^2 - z^2 = 4\\ 
z=\frac{1}{2}(5-y)
\end{matrix}\right.\Rightarrow x^2+y^2- \frac{1}{4} (5-y)^2 = 4

de onde,

x^2+y^2- \frac{1}{4} (5-y)^2 = 4\Rightarrow 4x^2+4y^2-25+10y-y^2 = 16\Rightarrow 4x^2+3y^2 + 10y -41=0.

Isto é uma elipse! (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}