• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial

Equação exponencial

Mensagempor Danilo » Sex Ago 17, 2012 00:57

Resolva a equação,

{4}^{x+1} + {4}^{3-x} = 257

Tentei resolver da seguinte maneira:

Chamei {2}^{x} de y e fatorei o 4 e fiz as substituições, aí ficou:

4{y}^{2} + \frac{{y}^{2}}{64} = 257

eu encontrei como restultado y = 8, y =-8 como {2}^{x} > 0 então y = 8. fazendo {2}^{x} = 8 eu encontro x = 3. Mas segundo a resposta do livro, a resposta é 3 e -1. Não consigo encontrar -1 como resposta, esse é o problema...
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação exponencial

Mensagempor Russman » Sex Ago 17, 2012 01:21

Você não resolveu corretamente!

Note que

4^{x+1} + 4^{3-x} = 257

se simplifica para

4^x.4+\frac{4^3}{4^x}=257 \Rightarrow 4.4^{2x}+64=257.4^x \Rightarrow 4.(4^x)^2-257.(4^x)+64=0.

Agora, faça 4^x=y. Aqui esté seu erro: você esqueceu que 4^x = (2^2)^x = 2^{2x} e não simplismente 2^x.

Assim,

4y^2 - 257y+64=0

de onde

y=\frac{257\pm \sqrt{257^2-4.4.64}}{8}\Rightarrow y=\frac{257\pm 255}{8}\Rightarrow \left\{\begin{matrix}
y_1=64\\ 
y_2=\frac{1}{4}
\end{matrix}\right.

Portanto,

\left\{\begin{matrix}
y_1=64\\ 
y_2=\frac{1}{2}
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
4^{x_1}=64\\ 
4^{x_2}=\frac{1}{4}
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
x_1=3\\ 
x_2=-1
\end{matrix}\right.

Aí está o gabarito.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Equação exponencial

Mensagempor Danilo » Sex Ago 17, 2012 01:24

Russman, obrigado aee :y: :y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}