• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Área do Triângulo]

[Área do Triângulo]

Mensagempor gustavowelp » Qui Ago 16, 2012 00:49

Olá! Boa noite!

Não sei como resolver esta questão. Se alguém puder me ajudar ficarei muito grato.

Qual a área, em km2, de um terreno triangular de vértices ABC sabendo que os ângulos ABC e CAB medem igualmente 35º e que a soma dos dois lados menores mede
20 km? Considere 0,94 como sendo o seno de 70º.

A resposta é 47

Muito obrigado
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: [Área do Triângulo]

Mensagempor Cleyson007 » Qui Ago 16, 2012 11:03

Bom dia Gustavo!

Temos que b + c = 20 Pelo fato dos ângulos serem iguais ----> b = c = 10

ângulo BÂC = 180º - 35º - 35º = 110º

S = b*c*sen110º/2 --->sen110º = sen(180º - 110º) = sen70º

S = 10*10*sen70º/2

S = 100*0,94/2

S = 47 km²

Espero ter ajudado.

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Área do Triângulo]

Mensagempor gustavowelp » Sex Ago 17, 2012 10:39

Olá Cleyson!

Não entendi isto: sen110º = sen(180º - 110º) = sen70º

Também não entendi a fórmula da área: é lado * lado * sen(xº) / 2 ? Isto ?

Obrigado!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: [Área do Triângulo]

Mensagempor Cleyson007 » Sex Ago 17, 2012 17:16

Boa tarde Gustavo!

Em resposta às suas dúvidas:

1ª) Tente entender pela imagem que fiz! (Em anexo)

2ª) A área de um triângulo pode ser obtida sabendo-se os lados dele. Sendo a e b dois lados quaisquer de um triângulo, e "alfa" o ângulo entre eles, temos que a área é:

At = a . b . sen (alfa) / 2 (Fonte: http://pt.wikipedia.org/wiki/Tri%C3%A2ngulo )

Comente qualquer dúvida.

Abraço,
Cleyson007
Anexos
Círculo Trigonométrico.png
Círculo Trigonométrico
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Área do Triângulo]

Mensagempor gustavowelp » Sáb Ago 18, 2012 09:35

Muito obrigado Cleyson!!!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}