por anfran1 » Qua Ago 15, 2012 16:23
A função

com b e c reais , tem duas raízes distintas pertencentes ao intervalo [-2,3]. Então prove que

.(O sinal representa menor que.)
Para que a função tenha duas raízes distintas

, então

. A partir daí não sei como prosseguir. Tentei afirmar que o vértice está nesse intervalo mas não deu certo. O que devo fazer?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Qua Ago 15, 2012 17:26
Boa tarde . Como você disse ,

.Perceba que além disso temos que ,

. Assim poderemos obter a seguinte inequação ,

Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por anfran1 » Qua Ago 15, 2012 20:12
Agora eu substituo -2 e 3 no lugar do x e faço o sistema?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por anfran1 » Qua Ago 15, 2012 20:22
Estive pensando nesse exercício. Como
![x=\frac{-b+-\sqrt[2]{\Delta}}{2} x=\frac{-b+-\sqrt[2]{\Delta}}{2}](/latexrender/pictures/b2a9b420b43d277df8feeff04331a49c.png)
Será que dá pra fazer
![-2\preceq\frac{-b+-\sqrt[2]{\Delta}}{2}\preceq3 -2\preceq\frac{-b+-\sqrt[2]{\Delta}}{2}\preceq3](/latexrender/pictures/09b33cdb825d8b589d17274c6bd926cb.png)
?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Qua Ago 15, 2012 20:29
Perceba que

.Uma vez que
![x_1 \in [-2,3] x_1 \in [-2,3]](/latexrender/pictures/8bad8268d71146b13f148418dfb124c5.png)
,assim
![-2x_1 \in[ -6,4 ] -2x_1 \in[ -6,4 ]](/latexrender/pictures/09dea5f204455167b36932a28ab7e86c.png)
.Mas como

,logo concluímos que

. Em outras palavras

. Sendo assim provemos o que queríamos.
Qualquer dúvida comente .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por anfran1 » Qua Ago 15, 2012 20:32
Já entendi a resolução. Só queria saber se é possível resolver dessa outra maneira. Desde já agradeço.
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Qua Ago 15, 2012 20:39
anfran1 escreveu:Já entendi a resolução. Só queria saber se é possível resolver dessa outra maneira. Desde já agradeço.
A resposta é sim ,contudo se você estabelecer a seguinte inequação

que é verdade ,pois sabemos que existe as raízes reais in [-2,3] . Como não temos condição sobre c ,a única coisa que sabemos sobre o mesmo é real e menor que b^2 /4 .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função do segundo grau
por gustavoluiss » Dom Nov 28, 2010 17:27
- 7 Respostas
- 5239 Exibições
- Última mensagem por alexandre32100

Qua Dez 01, 2010 15:39
Álgebra Elementar
-
- Função de segundo grau.
por Tatymtv » Ter Set 16, 2014 01:27
- 0 Respostas
- 1414 Exibições
- Última mensagem por Tatymtv

Ter Set 16, 2014 01:27
Funções
-
- Função de segundo grau simples
por Allanx » Sáb Mar 26, 2011 00:02
- 8 Respostas
- 4217 Exibições
- Última mensagem por Allanx

Dom Mar 27, 2011 00:10
Funções
-
- [DUVIDA]função de segundo grau
por julianafb » Ter Mar 05, 2013 01:33
- 1 Respostas
- 2458 Exibições
- Última mensagem por Russman

Ter Mar 05, 2013 02:04
Álgebra Linear
-
- Cálculo do lucro com função do segundo grau
por chenz » Qua Jun 02, 2010 10:07
- 2 Respostas
- 7232 Exibições
- Última mensagem por chenz

Qua Jun 09, 2010 11:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.