• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(PASES/2000) Função

(PASES/2000) Função

Mensagempor Rafael16 » Qua Ago 15, 2012 12:54

Boa tarde pessoal,

(PASES/2000) Sejam as funções reais f, g e h definidas por f(x)=\frac{3}{2(x+2)} g(x) = \frac{1}{2x-4} e h(x) = \frac{2}{x^2-4}

Se S = {x ? R|f(x) = g(x) - h(x)}, então é CORRETO afirmar que o conjunto S:

Resposta: é o conjunto vazio


Resolução:

\frac{3}{2(x+2)}=\frac{1}{2x-4}-\frac{2}{x^2-4} --> Tirando o MMC do segundo membro, fica

\frac{3}{2(x+2)}=\frac{(x+2)-4}{2(x+2)(x-2)} --> Multiplicando cruzado

6(x+2)(x-2)=2(x+2)

x = \frac{7}{3}

Não seria o conjunto unitário?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: (PASES/2000) Função

Mensagempor MarceloFantini » Qua Ago 15, 2012 13:06

Note que \frac{3}{2(x+2)} = \frac{x-2}{2(x+2)(x-2)} = \frac{1}{2(x+2)} para x \neq 2. Isto não é verdade para nenhum x \in \mathbb{R} \backslash \{ 2\}, portanto é o conjunto vazio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (PASES/2000) Função

Mensagempor Rafael16 » Qua Ago 15, 2012 13:24

MarceloFantini escreveu: Isto não é verdade para nenhum x \in \mathbb{R} \backslash \{ 2\}, portanto é o conjunto vazio.


Isso quer dizer que só vai ser absurdo o x = -2 para 2 das 3 funções? Por isso ser a solução o conjunto vazio?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: (PASES/2000) Função

Mensagempor MarceloFantini » Qua Ago 15, 2012 14:03

Você não deve pensar nas funções isoladamente, mas sim com a condição do enunciado. Devemos encontrar os valores reais tais que f(x) = g(x) - h(x), e não existe nenhum. Olhe a expressão que eu cheguei e teste: tomemos x=0. Então teremos \frac{3}{2(0+2)} = \frac{1}{2(0+2)}, que é falso. Qualquer valor real que você substituir será falso. Lembre-se que x \neq -2, 2 pela existência das funções, logo não existem valores reais satisfazendo a igualdade.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: