• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificar

Simplificar

Mensagempor Danilo » Ter Ago 14, 2012 15:32

Simplificar,

{\left[\left(a\sqrt[]{a} + b\sqrt[]{b} \right){ \left(\sqrt[]{a} + \sqrt[]{b} \right)}^{-1} + 3\sqrt[]{ab}  \right]}^{\frac{1}{2}}

eu fiz assim:
=

\sqrt[]{\frac{a\sqrt[]{a} + b\sqrt[]{b}}{\sqrt[]{a} + \sqrt[]{b}} + 3\sqrt[]{ab}} =

\sqrt[]{\left(\frac{a\sqrt[]{a} + b\sqrt[]{b} + 3a\sqrt[]{b} + 3b\sqrt[]{a}}{\sqrt[]{a} + \sqrt[]{b}} \right) \cdot \left(\frac{\sqrt[]{a} - \sqrt[]{b}}{\sqrt[]{a} - \sqrt[]{b}} \right)} =

\sqrt[]{\frac{{a}^{2} + b\sqrt[]{ab} + 3a\sqrt[]{ab} + 3ab - a\sqrt[]{ab} - {b}^{2} - 3ab -3b\sqrt[]{ab}}{a-b}} =

\sqrt[]{\frac{\left(a+b \right)\left(a-b \right)-2b\sqrt[]{ab} + 2a\sqrt[]{ab}}{a-b}} =

\sqrt[]{\frac{\left(a+b \right) -2\sqrt[]{ab}\left(b-a \right)}{a-b}}

e é aqui que eu não sei mais o que fazer... a resposta é \sqrt[]{a} + \sqrt[]{b}.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Simplificar

Mensagempor e8group » Ter Ago 14, 2012 17:09

Observe que sua expressão se resume a isto ,


\sqrt{ \frac{a^{3/2} +b^{3/2} +3(ab)^{1/2}(a^{1/2}+b^{1/2}}{a^{1/2}+b^{1/2}} .Agora seja ,

x = \sqrt{ \frac{a^{3/2} +b^{3/2} +3(ab)^{1/2}(a^{1/2}+b^{1/2}}{a^{1/2}+b^{1/2} } .Assumindo a e b são números positivos ,temos :


x^2 =  \frac{a^{3/2} +b^{3/2} +3(ab)^{1/2}(a^{1/2}+b^{1/2}}{a^{1/2}+b^{1/2} } .


Fazendo , a^{1/2} = w ; b^{1/2} = z segue que :



x^2 =\frac{ w^3 + z^3 +3(wz)[w+z]}{w+z} .Logo ,


x^2 = \frac{(w+z)^3}{w+z} .Ou seja , x = w+z ,lembrando que w = \sqrt{a} ;z= \sqrt{b} .Assim concluímos que ,


x = \sqrt{a} +\sqrt{b} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Simplificar

Mensagempor Danilo » Qua Ago 15, 2012 02:38

Valeu ! ;)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.